电子创新元件网 - 射频 //www.jhzyg.net/tag/%E5%B0%84%E9%A2%91 zh-hans 硅基氮化镓在射频市场的应用日益广泛 //www.jhzyg.net/content/2023/100574483.html

氮化镓技术将继续在国防和电信市场提供高性能和高效率。射频应用目前主要是碳化硅基氮化镓(GaN-on-SiC)器件。虽然硅基氮化镓(GaN-on-Si)目前不会威胁到碳化硅基氮化镓的主导地位,但它的出现将影响供应链,并可能影响未来的电信技术。

1990年代,美国国防部认识到,与InP、GaAs HBT、GaAs HEMT和Si LDMOS等材料相比,射频碳化硅基氮化镓具有更高的输出功率和效率。氮化镓具有更宽的带宽,并能减小系统尺寸。随着电信基础设施频率和基站型号的扩展,这两项能力都是必需的。这些功率和效率优势使其在国防领域得到广泛应用,其中碳化硅基氮化镓可应对机载雷达等高功率应用中的热调节挑战。

国防仍是射频氮化镓市场最大的应用领域之一。与此同时,RF GaN已开始被卫星通信市场所采用,与其他材料相比,RF GaN的高效率使器件尺寸更小,从而在系统层面释放出宝贵的空间。Yole的RF GaN 2023报告预测,从2022年到2028年,国防和卫星通信领域的年均增长率将分别达到13%和18%。这将推动国防市场达到约10亿美元,而卫星通信市场将在2028年达到约2.7亿美元。Yole对射频氮化镓收入和细分市场的预测见图1。

图1 2022年至2028年射频GaN器件收入预测和细分。资料来源:RF GaN 2023 report, Yole Intelligence, 2023。

电信基础设施中的射频氮化镓

2023年,主流的氮化镓技术采用碳化硅衬底。这种成熟的技术在6GHz以下频率表现出卓越的特性,如更高的功率增加效率、热传导性和功率密度。华为于2015年首次推出并于2020年开始量产用于4G基站的碳化硅基氮化镓。从那时起,电信应用的射频GaN通过推动对具有成本优势的6英寸SiC晶圆的需求,已经发展成为一个庞大的市场。SEDI、Wolfspeed、NXP和Qorvo等世界各地的公司进行了大量投资,以确保碳化硅基氮化镓在其目标应用中占据主导地位,并取代其对应的Si LDMOS。图2显示了各种射频功率技术在电信基础设施市场份额的预期变化。

图2 2023年射频GaN在电信基础设施市场的渗透率。资料来源:RF GaN 2023 report, Yole Intelligence, 2023。

4G微站和宏站主要基于远端射频头(RRH),RRH将基站的射频链和模数转换组件与多达8个输出功率高达100W的多路功率放大器(PA)集成在一起。随着4G时代的结束,预计3GHz基站对基于LDMOS的功率放大器的依赖将逐渐减弱。新兴的6GHz以下5G基站正在从2×2 MIMO转向64×64大规模MIMO(mMIMO),并采用有源天线系统(AAS)取代RRH。除了增加功率放大器的数量外,这种架构预计将降低每个功率放大器的输出功率。输出功率从100瓦到5瓦不等。此外,还要求功率放大器在处理不断增加的数据流量的同时降低功耗。图3显示了5G电信基础设施的演进愿景。

图3 电信基础设施系统的发展趋势。资料来源:RF GaN 2023 report, Yole Intelligence, 2023。

GaN可以满足所有这些要求。随着GaN-on-SiC满足5G高达7GHz的频率要求,LDMOS的市场份额预计将下降。短期内,随着印度等新区域市场在建设电信基础设施时采用AAS,射频碳化硅基氮化镓也有望从中受益。对于5G毫米波和6G,由于要求更加注重高频率和低功耗,预计射频氮化镓技术将面临与SiGe和InP等其他材料更激烈的竞争。

本文转载自: 微波世界微信公众号

Tue, 19 Sep 2023 07:21:50 +0000 judy 100574483 at //www.jhzyg.net //www.jhzyg.net/content/2023/100574483.html#comments
射频PCB仿真优化应用 //www.jhzyg.net/content/2022/100557412.html

射频PCB的仿真优化一直是研究的重要领域,尤其是当手机等智能电子设备更新换代的速度越来越快,如何能快速地迭代现有产品,进行仿真优化是射频工程师关注的重点。保障质量、降低成本、加快迭代速度成为了每个公司的核心竞争力。而一款好的仿真工具,有助于很好的解决以上问题,用最小的花费带来最大的优势。

本文介绍了采用芯和半导体XDS软件进行射频PCB的设计优化流程。XDS集成了原理图和版图两个仿真模块,拥有与之配套的电路仿真引擎和电磁场仿真引擎。利用XDS进行射频PCB仿真,设计者不但能快速得出仿真结果,也能借助XDS中的Parametric参数化优化、Optimization目标优化、DOE敏感度分析、Yield统计分析等优化功能模块,快速实现匹配电路中器件的优化设计,快速找到物料成本最低并且性能最好的参数组合,实现系统的最优设计。

射频PCB的建模仿真流程

XDS支持导入所有主流格式的设计文件:包括Cadence、PADS、Zuken的设计文件等。导入时选择需要的网络名,使用切割工具对仿真区域进行精简,建立端口并执行仿真就能得到S参数结果。

1.射频PCB建模

在XDS中可以快速导入多种格式设计文件,本文选用导入.brd的格式文件,选择全部网络后,立即建立了整个PCB的三维模型,并且包含了所有相关的叠层信息。本案例仅仿真单通路,因此我们选择切割工具,将要仿真的这一路单独分离出来。(出于知识产权的原因,我们将模型效果做模糊处理,如图1所示)。

图 1:XDS中建立模型(已模糊处理)

在XDS2021.01.SP1中,新增了PCB及原理图加密功能,能够有效的保护设计文件。在模型工程中选择右键Create Encrypted Model建立加密模型,然后选择要隐藏的网络、端口等,如图2。然后选择Export Encrypted Model导出加密模型,在这一步可以设计加密密码,如图3。再选择导入这个模型之后,可以看到之前选择的关键信息都已被屏蔽,如图4。

图 2&3:建立加密模型、导出加密模型

图 4:导入加密模型

2.创建端口,设置仿真参数

XDS创建端口十分简单,除了可手动在每个通路中添加端口外,也可选择自动添加所有端口,如图5,再从中筛选需要的端口。

图 5:自动添加端口

XDS的求解器设置包含“精确求解”和“快速求解”两种快捷模式,提高了工程师设置仿真的效率。此外,对网格划分或者精度有较高要求的工程师可以进行更为详细的高级设置。

图 6:求解器和网格设置

3.场路协同仿真

XDS除了可以进行电磁场仿真,还可以帮助射频工程师进行场路协同仿真,在工程树中版图右键添加到原理图中,可以将版图导入原理图中,如图6。这样可以在不同的端口之间,添加器件模型。目前除了已有的MURATA器件外,芯和半导体正在积极和国内器件厂商合作,很快将有更多国产器件模型库添加进来,满足工程师的使用需求,如图8,图9。

图 7:将版图导入原理图

图 8&9:导入器件库、在原理图中添加器件

图 10&11:RL结果、IL结果

射频PCB优化

XDS提供了Parametric参数化优化、Optimization目标优化、DOE敏感度分析、Yield统计分析、Tuning实时调谐等优化功能模块,设计者可以快速实现匹配电路中器件的优化设计,快速找到物料成本最低并且性能最好的参数组合,实现系统的最优设计优化。

功能介绍

Optimization:目标优化功能,工程师可以利用这个功能,给定一个目标,将链路中的器件进行优化,利用优化后的结果进行再次设计。在工程树中右键Add Optimization,在下面新增的OptimizationSetup 中点击“Property…”,弹出“Setup Optimization:OptimizationSetup”编辑窗口,用户可在该窗口设置变量范围、优化目标等属性。

图 12:Optimization 设置

图 13:Optimization 结果

DOE:质量控制敏感度分析,工程师可以通过查看不同器件的公差,给整个系统来带的误差进行分析,用尽可能少的样本次数分析产品性能和设计参数间的敏感度关系,将那些容易差生误差的敏感性器件,替换成更高品质的器件。定义好Design Variable后,在工程树中右键单击Add DOE,在下面新增的DoeSetup右键点击“Property…”,弹出“Setup Doe:DoeSetup”编辑窗口,用户可在该窗口设置变量范围、优化目标等属性。如图14的结果,不同的器件展现出对于不同公差所带来的影响也不同。

图 14:DOE 结果分析

Yield:利用指定的概率分布改变一组参数值的过程,以确定有多少可能的组合能够满足预定的性能指标。Yield是统计设计的度量单位。它被定义为满足性能规范的设计数量与生产的设计总数的比率。它也可以被认为是一个给定的设计样本通过规格的概率。在工程树中右键单击Add Yield, 右键YieldSetup 点击“Property…”,弹出“Setup Yield:YieldSetup”编辑窗口,用户可在该窗口设置变量范围、初始相关系数、优化目标等属性。

图 15:Yield 结果分析

总结
本文介绍了芯和半导体XDS工具快速创建射频PCB模型,仿真分析并优化的流程。针对射频PCB,XDS不但可以快速建模仿真,还可以将文件进行加密处理,仿真完成后,可以利用Yield、DOE和Optimization工具进行链路优化,帮助工程师快速得到仿真结果。

Thu, 27 Jan 2022 06:45:50 +0000 judy 100557412 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557412.html#comments
Baidu
map