电子创新元件网 - MOSFET - 德赢平台,德赢ac米兰官方区域合作伙伴 //www.jhzyg.net/tag/mosfet zh-hans IGBT和MOSFET该用谁?你选对了吗? //www.jhzyg.net/content/2022/100558274.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>作者 Doctor M,文章来源:<span id="profileBt"><a href="https://www.mouser.cn/blog/cn-power-igbt-mosfet-automotive-application">贸泽电子</a></span></p> <p>半导体功率器件主要包括功率二极管、功率三极管、晶闸管、MOSFET、IGBT等。其中MOSFET和IGBT属于电压控制型开关器件,具有开关速度快、易于驱动、损耗低等优势。IGBT全称是绝缘栅极型功率管,是由双极型三极管 (BJT) 和MOSFET组成的复合全控型电压驱动式半导体功率器件,兼有MOSFET的高输入阻抗和BJT的低导通压降两方面的优点。随着新能源汽车、智能家电、5G、轨道交通等行业的兴起,MOSFET和IGBT也迎来了发展的春天。</p> <p>然而,在实际应用中,工程师们都会遇到一个相同的困惑:器件的选型着实令人头疼。对此,小编感同身受。今天,我们就一起来看看MOSFET和IGBT之间的有哪些异同点,在选型时应着重查看哪些参数。</p> <p><strong>MOSFET和IGBT的异同点</strong><br /> MOSFET和IGBT均为集成在单片硅上的固态半导体器件,且都属于电压控制器件。另外,IGBT和MOSFET在栅极和其他端子之间都有绝缘,两种器件全部具有较高的输入阻抗。在应用中,IGBT和MOSFET都可以用作静态电子开关。</p> <p>虽然有很多共同点,但在性能参数和应用上,IGBT与MOSFET还是有许多不同之处。</p> <p>在结构上,MOSFET和IGBT看起来非常相似,实则不同。IGBT由发射极、集电极和栅极端子组成,而MOSFET由源极、漏极和栅极端子组成。IGBT的结构中有PN结,MOSFET没有任何PN结。</p> <p>在特性参数上,MOSFET和IGBT的主要区别体现在以下9个方面:</p> <p>1. 在低电流区,MOSFET的导通电压低于IGBT,这也是它的优势。不过,在大电流区IGBT的正向电压特性优于MOSFET。此外,由于MOSFET的正向特性对温度具有很强的正向依赖性,因此,IGBT的高温特性更好,导通电压比MOSFET低。<br /> 2. IGBT适用于中到极高电流的传导和控制,而MOSFET适用于低到中等电流的传导和控制。<br /> 3. IGBT不适合高频应用,它能在千Hz频率下运行良好。MOSFET特别适合非常高频的应用,它可以在兆Hz频率下运行良好。<br /> 4. IGBT的开关速度比较低,MOSFET开关速度非常高。<br /> 5. IGBT可以承受非常高的电压以及大功率,MOSFET仅适用于低至中压应用。<br /> 6. IGBT具有较大的关断时间,MOSFET的关断时间较小。<br /> 7. IGBT可以处理任何瞬态电压和电流,但当发生瞬态电压时,MOSFET的运行会受到干扰。<br /> 8. MOSFET器件成本低,价格便宜,而IGBT至今仍属于较高成本器件。<br /> 9. IGBT适合高功率交流应用,MOSFET适合低功率直流应用。</p> <p>因为上述这些差别,在应用上MOSFET和IGBT各有侧重点。通常,MOSFET的额定电压约为600V,而IGBT的额定电压能够达到1400V。从额定电压角度看,IGBT主要用于更高电压的应用。从工作频率角度看,IGBT通常在低于20kHz的开关频率下使用,此时它们比单极性MOSFET具有更高的开关损耗。</p> <p>综合来看,对于低频 (小于20kHz) 、高压 (大于1000V) 、小或窄负载或线路变化、高工作温度,以及超过5kw的额定输出功率应用,IGBT是首选。而MOSFET更适合低电压 (小于250V) 、大占空比和高频 (大于200KHz) 的应用。<br /> </p><center><img src="//www.jhzyg.net/files/2022-03/wen_zhang_/100558274-244898-tu1butongleixingjingtiguandexingnengbijiao.png" alt="" /></center> <p align="center"><strong>图1:不同类型晶体管的性能比较 (图源:TOSHIBA)</strong></p> <p><strong>MOSFET关键的电气参数</strong><br /> MOSFET的优点决定了它非常适合高频且开关速度要求高的应用。在开关电源 (SMPS) 中,MOSFET的寄生参数至关重要,它决定了转换时间、导通电阻、振铃 (开关时超调) 和背栅击穿等性能,这些都与SMPS的效率密切相关。</p> <p>作为电源开关,选择的MOSFET应该具有极低的导通电阻、低输入电容 (即Miller电容) 以及极高的栅极击穿电压,这个数值甚至高到足以处理电感产生的任何峰值电压。另外,漏极和源极之间的寄生电感也是越低越好,因为低寄生电感可将开关过程中的电压峰值降至最低。</p> <p>对于门驱动器或者逆变器应用,通常需要选择低输入电容 (利于快速切换) 以及较高驱动能力的MOSFET。</p> <p><strong>IGBT关键的电气参数</strong><br /> IGBT的主要优势是能够处理和传导中至超高电压和大电流,拥有非常高的栅极绝缘特性,且在电流传导过程中产生非常低的正向压降,哪怕浪涌电压出现时,IGBT的运行也不会受到干扰。不足之处在于IGBT不适合高频应用。与MOSFET相比,开关速度较慢,关断时间较长。</p> <p>在实际应用中,逆变技术对IGBT的参数要求并不是一成不变的,对IGBT的要求各不相同。</p> <p>综合来看,下面这些参数在IGBT的选择中是至关重要的。</p> <p>一是额定电压,在开关工作的条件下,IGBT的额定电压通常要高于直流母线电压的两倍。<br /> 二是额定电流,由于负载电气启动或加速时,电流过载,要求在1分钟的时间内IGBT能够承受1.5倍的过流。<br /> 三是开关速度。<br /> 四是栅极电压,IGBT的工作状态与正向栅极电压有很大关系,电压越高,开关损耗越小,正向压降也更小。</p> <p><strong>新能源汽车中的IGBT和MOSFET</strong><br /> 汽车电动化乃大势所趋。现在,各国政府纷纷制定了各自的碳达峰和碳中和目标,从传统的ICE车辆转向纯电动车辆具有非常重要的意义。更严格的全球CO2排放要求不断加速汽车电动化的进程,预计从2021年到2026年电动车/混合动力车 (EV/HEV) 的复合年增长率 (CAGR(VOL)) 将达到20.1%,被称为零排放汽车 (ZEV) 的电池电动汽车 (BEV) ,其CAGR (VOL) 将高达29.7%。<br /> </p><center><img src="//www.jhzyg.net/files/2022-03/wen_zhang_/100558274-244899-tu2evhevzaiweilai5niandezengchang.png" alt="" /></center> <p align="center"><strong>图2:EV/HEV在未来5年的增长 (图源:onsemi)</strong></p> <p>新能源车中的电机控制系统、引擎控制系统、车身控制系统均需使用大量的半导体功率器件,它的普及为汽车功率半导体市场打开了增长的窗口。在各类半导体功率器件中,未来增长最强劲的产品将是MOSFET与IGBT模块。</p> <p>据研究机构IC Insights的分析结果,2016年,全球MOSFET市场规模达到了62亿美元,预计2016年至2022年间MOSFET市场的年复合增长率将达到3.4%。预计到2022年,全球MOSFET市场规模将接近75亿美元。</p> <p>IGBT是新能源汽车高压系统的核心器件,其最核心应用为主驱逆变,此外还包括车载充电器 (OBC) 、电池管理系统、车载空调控制系统、转向等高压辅助系统。在直流和交流充电桩中,IGBT也有着广泛应用。在新能源汽车中,MOSFET主要在汽车低压电器中使用,比如电动座椅调节、电池电路保护、雨刷器的直流电机、LED照明系统等。</p> <p><strong>IGBT和MOSFET“芯”品推荐</strong><br /> AFGHL25T120RHD是安森美 (onsemi) 汽车级低成本的1200V 25A IGBT,该模块符合AEC Q101规范,具有坚固且经济高效的场阻II沟槽结构。在要求苛刻的开关应用中可提供优异的性能,同时提供低导通电压和最小的开关损耗,可用于EV/HEV的PTC加热器、电动压缩机、车载充电器等系统中。</p> <p>安森美的另一款MOSFET模块FAM65CR51ADZ1,是一款650V的电源集成模块 (PIM) ,它带有升压转换器器,主要用于EV/HEV中的车载充电器 (OBC) 中,它能让系统的设计更加小巧、高效和可靠。</p> <p>Infineon Technologies (英飞凌) 有着极其丰富的IGBT功率模块产品组合,这些产品系列拥有不同的电路结构、芯片配置和电流电压等级,覆盖了市场上的大多数应用。它们有斩波器、DUAL、PIM、四单元、六单元、十二单元、三电平、升压器或单开关配置,电流等级从6A到3600A不等。IGBT模块的适用功率小至几百瓦,高至数兆瓦。</p> <p>比如,英飞凌的HybridPACK系列就提供基于6种不同封装的多个版本,专门针对100kW到200kW之间的不同逆变器性能水平进行了优化,拓展了面向EV/HEV的IGBT模块功率区间。该系列中的HybridPACK Drive是一款非常紧凑的功率模块,专为EV/HEV车辆牵引应用而优化,功率范围为100kW至175kW,可在电动汽车的实际驱动循环中实现最高效率,即使在恶劣环境条件下也能可靠运行逆变器。<br /> </p><center><img src="//www.jhzyg.net/files/2022-03/wen_zhang_/100558274-244900-tu3yongyudiandongqichezhunibianqidegonglumokuaihybridpackdriveigbtmokuai.png" alt="" /></center> <p align="center"><strong>图3:用于电动汽车主逆变器的功率模块HybridPACK Drive IGBT模块 (图源:Infineon)</strong></p> <p>其中,HybridPACK Drive Flat模块 (FS660R08A6P2Fx) 和Wave模块 (FS770R08A6P2x) 是HybridPACK Drive产品家族中的低性能产品,经济划算,分别适用于100kW至150kW逆变器。作为产品组合中的高端产品,HybridPACK Drive Performance模块 (FS950R08A6P2B) 的目标应用是200kW逆变器。因使用了专门的陶瓷材料,而非常用的氧化铝,其散热性能提升了20%以上,可以达到更高的电流承受能力。</p> <p>英飞凌旗下的600V、650V及800V N沟道功率MOSFET主要针对高性能的汽车应用,CoolMOS N沟道MOSFET是该公司具有代表性的产品系列,适合低功率至高功率应用,在易用性、高性能与价格之间取得了巧妙平衡。</p> <p><strong>结语</strong><br /> 功率半导体器件又称为电力电子器件,是电力电子装置实现电能转换、电路控制的核心器件。上世纪80年代发展起来的硅基MOSFET工作频率达到了兆Hz级。随着硅基IGBT的出现,功率器件在大功率化和高频化之间找到了解决方案。</p> <p>在不间断电源 (UPS) 、工业逆变器、功率控制、电机驱动、脉宽调制 (PWM) 、开关电源 (SMPS) 等开关应用中,MOSFET和IGBT因其具有的优越特性,在性能上明显优于其他开关器件。其中,MOSFET主要用于较低的电压和功率系统,而IGBT更适合较高的电压和功率应用。</p> <p>在新能源汽车、智能家电、5G等需求的拉动下,IGBT和MOSFET的市场规模不断扩大,进入该领域的企业越来越多。如何在品类繁杂的市场中找到最符合自己需求的产品是一件令人头疼的事。其实,无论多么复杂,你只需关注上面我们介绍的那些主要参数,相信就一定会找到满意的产品。</p> </div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/igbt"><span class='glyphicon glyphicon-tag'></span> IGBT</a> </li> <li> <a href="/tag/mosfet"><span class='glyphicon glyphicon-tag'></span> MOSFET</a> </li> <li> <a href="/tag/功率器件"><span class='glyphicon glyphicon-tag'></span> 功率器件</a> </li> </ul> Fri, 04 Mar 2022 06:53:16 +0000 judy 100558274 at //www.jhzyg.net //www.jhzyg.net/content/2022/100558274.html#comments 从硅过渡到碳化硅,MOSFET的结构及性能优劣势对比 //www.jhzyg.net/content/2022/100557954.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">近年来,因为新能源汽车、光伏及储能、各种电源应用等下游市场的驱动,碳化硅功率器件取得了长足发展。更快的开关速度,更好的温度特性使得系统损耗大幅降低,效率提升,体积减小,从而实现变换器的高效高功率密度化。但是,像碳化硅这样的宽带隙(</span><span style="box-sizing: border-box; color: black;">WBG</span><span style="box-sizing: border-box; color: black;">)器件也给应用研发带来了设计挑战,因而业界对于碳化硅</span><span style="box-sizing: border-box; color: black;"> MOSFET</span><span style="box-sizing: border-box; color: black;">平面栅和沟槽栅的选择和权衡以及其浪涌电流、短路能力、栅极可靠性等仍心存疑虑。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">碳化硅</span></strong><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">MOSFET</span></strong><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">性能如何?</span></strong></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">650V-1200V</span><span style="box-sizing: border-box; color: black;">电压等级的</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">商业产品已经从</span><span style="box-sizing: border-box; color: black;">Gen 2</span><span style="box-sizing: border-box; color: black;">发展到了</span><span style="box-sizing: border-box; color: black;">Gen 3</span><span style="box-sizing: border-box; color: black;">,随着技术的发展,元胞宽度持续减小,比导通电阻持续降低,器件性能超越</span><span style="box-sizing: border-box; color: black;">Si</span><span style="box-sizing: border-box; color: black;">器件,浪涌电流、短路能力、栅氧可靠性等可靠性问题备受关注。那么</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">体二极管能抗多大的浪涌电流?其短路能力如何?如何保证栅极可靠性?</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">的体二极管抗浪涌电流大小与芯片的大小成正比。像派恩杰半导体采用自己搭建的</span><span style="box-sizing: border-box; color: black;">10ms</span><span style="box-sizing: border-box; color: black;">正弦半波浪涌极限测试平台和</span><span style="box-sizing: border-box; color: black;">10us</span><span style="box-sizing: border-box; color: black;">方波半波浪涌极限测试平台对其</span><span style="box-sizing: border-box; color: black;">1200V</span><span style="box-sizing: border-box; color: black;">的</span><span style="box-sizing: border-box; color: black;">SiC MOSFET P3M12080K3</span><span style="box-sizing: border-box; color: black;">进行抽样测试</span><span style="box-sizing: border-box; color: black;">10ms IFSM &gt;120A, 10us IFSM&gt;1100A</span><span style="box-sizing: border-box; color: black;">。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-align: center; line-height: 1.75em;"><img src="/files/ueditor/108/upload/catcher/20220223/1645607789156132.jpg" title="1645601609980769.jpg" alt="1.jpg" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%;" /></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; margin-left: 7px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-indent: 18px; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">图</span><span style="box-sizing: border-box; color: black;">1 10ms</span><span style="box-sizing: border-box; color: black;">浪涌极限测试平台</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-align: center; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;"><img src="/files/ueditor/108/upload/catcher/20220223/1645607790917498.jpg" title="1645601605982048.jpg" alt="2.jpg" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%;" /></span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; margin-left: 7px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-indent: 18px; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">图</span><span style="box-sizing: border-box; color: black;">2 10us</span><span style="box-sizing: border-box; color: black;">浪涌极限测试平台</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">至于短路能力,相较与</span><span style="box-sizing: border-box; color: black;">Si IGBT</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">电流密度更高且栅极氧化层较薄,其短路能力要弱于</span><span style="box-sizing: border-box; color: black;">Si IGBT</span><span style="box-sizing: border-box; color: black;">,但其依然有一定的短路能力。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">下表是派恩杰半导体部分产品短路能力:</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">表</span><span style="box-sizing: border-box; color: black;">1 1200V/650V MOSFET</span><span style="box-sizing: border-box; color: black;">器件短路耐量</span></p><p style="text-align:center"><span style="box-sizing: border-box; color: black;"><img src="/files/ueditor/108/upload/image/20220223/1645607827485658.jpg" title="1645607827485658.jpg" alt="捕获.JPG" /></span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">派恩杰半导体针对栅极的可靠性是严格按照</span><span style="box-sizing: border-box; color: black;">AEC-Q101</span><span style="box-sizing: border-box; color: black;">标准进行,在栅极分别加负压和正压(</span><span style="box-sizing: border-box; color: black;">-4V/+15V</span><span style="box-sizing: border-box; color: black;">)温度</span><span style="box-sizing: border-box; color: black;">175</span><span style="box-sizing: border-box; color: black;">℃下进行</span><span style="box-sizing: border-box; color: black;">HTGBR</span><span style="box-sizing: border-box; color: black;">和</span><span style="box-sizing: border-box; color: black;">HTRB</span><span style="box-sizing: border-box; color: black;">实验</span><span style="box-sizing: border-box; color: black;">1000h</span><span style="box-sizing: border-box; color: black;">无产品失效。除了常规</span><span style="box-sizing: border-box; color: black;">AEC-Q101</span><span style="box-sizing: border-box; color: black;">中要求的</span><span style="box-sizing: border-box; color: black;">1000h</span><span style="box-sizing: border-box; color: black;">小时实验,派恩杰半导体对于栅极寿命经行了大量研究。由于</span><span style="box-sizing: border-box; color: black;">SiC/SiO2</span><span style="box-sizing: border-box; color: black;">界面存在比</span><span style="box-sizing: border-box; color: black;">Si/SiO2</span><span style="box-sizing: border-box; color: black;">更大数量级的杂质缺陷,因此</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">通常拥有更高的早期失效概率。为了提高</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">的栅极可靠性,通过筛选识别并出早期失效非常重要。派恩杰半导体通过</span><span style="box-sizing: border-box; color: black;">TDDB</span><span style="box-sizing: border-box; color: black;">实验建立栅氧加速模型并建立筛选机制来消除潜在的失效可能性器件(可见往期推送)。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">除了</span><span style="box-sizing: border-box; color: black;">TDDB</span><span style="box-sizing: border-box; color: black;">外,当正常器件使用时,由于半导体</span><span style="box-sizing: border-box; color: black;">-</span><span style="box-sizing: border-box; color: black;">氧化界面处缺陷的产生或充放电,</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">的阈值电压会有漂移现象,阈值电压的漂移可能对器件长期运行产生明显影响。派恩杰半导体在高温条件下给</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">施加恒定的</span><span style="box-sizing: border-box; color: black;">DC</span><span style="box-sizing: border-box; color: black;">偏压,观察其阈值电压的变化量。一般施加正向偏压应力时,阈值电压向更高的电压偏移;施加负向偏压应力时,阈值电压向更低的电压偏移。这种效应是由于</span><span style="box-sizing: border-box; color: black;">SiC/SiO2</span><span style="box-sizing: border-box; color: black;">界面处或附近的载流子捕获引起的,负向高压是</span><span style="box-sizing: border-box; color: black;">MOS</span><span style="box-sizing: border-box; color: black;">界面附近的空穴被俘获,产生更多的空穴陷阱;相反正向高压造成电子的俘获。</span> <span style="box-sizing: border-box; color: black;">当然,也有的竞品产品在施加正向偏压应力时,阈值电压向更低的电压偏移;施加负向偏压应力时,阈值电压向更高的电压偏移。这是由于可移动离子在</span><span style="box-sizing: border-box; color: black;">SiC/SiO2</span><span style="box-sizing: border-box; color: black;">界面积累造成的,正向的偏压使得正性的可移动离子在</span><span style="box-sizing: border-box; color: black;">SiO2/SiC</span><span style="box-sizing: border-box; color: black;">界面积累,造成阈值电压负向漂移;负向的偏压使得正性的可移动离子在</span><span style="box-sizing: border-box; color: black;">poly/SiO2</span><span style="box-sizing: border-box; color: black;">界面积累,造成阈值电压正偏。为评估器件在使用过程中阈值电压漂移情况,派恩杰半导体进行了大量</span><span style="box-sizing: border-box; color: black;">BTI</span><span style="box-sizing: border-box; color: black;">实验,基于实验数据建立了</span><span style="box-sizing: border-box; color: black;">PBTI&amp;NBTI</span><span style="box-sizing: border-box; color: black;">模型,借助模型可知晓器件在不同温度和栅压情况下的阈值电压漂移程度。以</span><span style="box-sizing: border-box; color: black;">P3M12080K4</span><span style="box-sizing: border-box; color: black;">产品为例,该产品在极端应用情况下</span><span style="box-sizing: border-box; color: black;">(PBTI:V<span style="box-sizing: border-box; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; bottom: -0.25em;">gs</span>=19V</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">T<span style="box-sizing: border-box; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; bottom: -0.25em;">A</span>=150</span><span style="box-sizing: border-box; color: black;">℃</span><span style="box-sizing: border-box; color: black;">)</span><span style="box-sizing: border-box; color: black;">使用</span><span style="box-sizing: border-box; color: black;">20</span><span style="box-sizing: border-box; color: black;">年阈值电压的漂移情况(</span><span style="box-sizing: border-box; color: black;">+0.348V</span><span style="box-sizing: border-box; color: black;">)</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">该产品在极端应用情况下</span><span style="box-sizing: border-box; color: black;">(NBTI:V<span style="box-sizing: border-box; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; bottom: -0.25em;">gs</span>=-8V</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">T<span style="box-sizing: border-box; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; bottom: -0.25em;">A</span>=150</span><span style="box-sizing: border-box; color: black;">℃</span><span style="box-sizing: border-box; color: black;">)</span><span style="box-sizing: border-box; color: black;">使用</span><span style="box-sizing: border-box; color: black;">20</span><span style="box-sizing: border-box; color: black;">年阈值电压的漂移情况(</span><span style="box-sizing: border-box; color: black;">-0.17V</span><span style="box-sizing: border-box; color: black;">)。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">Cascode</span></strong><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">、平面栅、沟槽栅优缺点</span></strong></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">为提高高压电源系统能源效率,半导体业者无不积极研发经济型高性能碳化硅功率器件</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">例如</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构、碳化硅</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">平面栅结构、碳化硅</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">沟槽栅结构等。这些不同的技术对于碳化硅功率器件应用到底有什么影响,该如何选择呢?</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">首先,</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">是指采用</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">和常开型的</span><span style="box-sizing: border-box; color: black;">SiC JFET</span><span style="box-sizing: border-box; color: black;">串联连接,如图</span><span style="box-sizing: border-box; color: black;">3</span><span style="box-sizing: border-box; color: black;">所示。当</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">栅极为高电平时,</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">导通使得</span><span style="box-sizing: border-box; color: black;">SiC JFET</span><span style="box-sizing: border-box; color: black;">的</span><span style="box-sizing: border-box; color: black;">GS</span><span style="box-sizing: border-box; color: black;">短路,从而使其导通。当</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">栅极为低电平时,其漏极电压上升直至使</span><span style="box-sizing: border-box; color: black;">SiC JFET</span><span style="box-sizing: border-box; color: black;">的</span><span style="box-sizing: border-box; color: black;">GS</span><span style="box-sizing: border-box; color: black;">电压达到其关断的负压时,这时器件关断。</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构主要的优点是相同的导通电阻有更小的芯片面积,由于栅极开关由</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">控制,使得客户在应用中可以沿用</span><span style="box-sizing: border-box; color: black;">Si</span><span style="box-sizing: border-box; color: black;">的驱动设计,不需要单独设计驱动电路。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-align: center; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;"><img src="/files/ueditor/108/upload/catcher/20220223/1645607797934294.jpg" title="1645601598797817.jpg" alt="3.jpg" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%;" /></span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; margin-left: 7px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-indent: 18px; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">图</span><span style="box-sizing: border-box; color: black;">3 SiC Cascode</span><span style="box-sizing: border-box; color: black;">结构示意图</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">派恩杰半导体认为,</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构只是从</span><span style="box-sizing: border-box; color: black;">Si</span><span style="box-sizing: border-box; color: black;">产品转向</span><span style="box-sizing: border-box; color: black;">SiC</span><span style="box-sizing: border-box; color: black;">产品的一个过渡产品,因为</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构完全无法发挥出</span><span style="box-sizing: border-box; color: black;">SiC</span><span style="box-sizing: border-box; color: black;">器件的独特优势。首先,由于集成了</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">限制了</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">的高温应用,特别是其高温</span><span style="box-sizing: border-box; color: black;">Rdson</span><span style="box-sizing: border-box; color: black;">会达到常温下的</span><span style="box-sizing: border-box; color: black;">2</span><span style="box-sizing: border-box; color: black;">倍;其次,器件开关是由</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">控制,因此开关频率远低于正常</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">器件,这是由于</span><span style="box-sizing: border-box; color: black;">JFET</span><span style="box-sizing: border-box; color: black;">和</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">的合封其</span><span style="box-sizing: border-box; color: black;">dv/dt</span><span style="box-sizing: border-box; color: black;">也只能达到</span><span style="box-sizing: border-box; color: black;">10V/ns </span><span style="box-sizing: border-box; color: black;">以下,而</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">的</span><span style="box-sizing: border-box; color: black;">dv/dt</span><span style="box-sizing: border-box; color: black;">通常可以到达</span><span style="box-sizing: border-box; color: black;">30V/ns~80V/ns</span><span style="box-sizing: border-box; color: black;">。这些缺点使得</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">也无法减小无源元件的尺寸,从而达到减小整体系统体积和成本的需求;最后,虽然从</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构上是由</span><span style="box-sizing: border-box; color: black;">SiC </span><span style="box-sizing: border-box; color: black;">高压</span><span style="box-sizing: border-box; color: black;">JFET</span><span style="box-sizing: border-box; color: black;">器件来承受母线电压,但是在开关过程中,</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">和</span><span style="box-sizing: border-box; color: black;">JFET</span><span style="box-sizing: border-box; color: black;">的输出电容依然会分压,当回路中存在电压震荡时,低压</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">依然有被击穿的风险。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">沟槽栅的主要优势来源于纵向沟道,这不但提高了载流子迁移率(这是由于</span><span style="box-sizing: border-box; color: black;">SiC(11<img src="/files/ueditor/108/upload/catcher/20220223/1645607797737343.jpg" title="1645601568282299.jpg" alt="1645601482(1).jpg" width="21" height="19" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%; width: 21px; height: 19px;" /></span>)晶面的迁移率高于(0001)晶面)而且可以缩小元胞尺寸从而有比平面型MOSFET更低的比导通电阻。然而,由于SiC非常坚硬,想要获得均匀,光滑且垂直的刻蚀表面的工艺难度和控制要求都非常的高,这也是只有英飞凌和Rohm推出沟槽栅SiC MOSFET的原因。沟槽栅工艺不仅对工艺实现要求非常高,在可靠性方面也存在一定的风险。首先,由于沟槽刻蚀后表面粗糙度和角度的限制使得沟槽栅的栅氧质量存在风险;其次,由于SiC的各向异性,沟槽侧壁的氧化层厚度和沟槽底部的氧化层厚度不同,因此必须采用特殊的结构和工艺来避免沟槽底部特别是拐角部分的击穿,这也增加了沟槽栅栅氧可靠性的不确定性;最后,由于trench MOSFET的结构,使得trench栅氧的电场强度要高于平面型,这也是Infineon和Rohm要做单边和双沟槽的原因。</p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">平面栅则是最早也是应用最广泛的结构,目前主流的产品均使用该结构。派恩杰半导体产品采用的是也是平面栅</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">结构。基于平面栅结构,派恩杰已经发布了</span><span style="box-sizing: border-box; color: black;">650V-1700V</span><span style="box-sizing: border-box; color: black;">各个电压平台的</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">,而且已经顺利在新能源龙头企业批量供货,实现“上车”。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-align: center; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;"><img src="/files/ueditor/108/upload/catcher/20220223/1645607797427612.jpg" title="1645601585739776.jpg" alt="4.jpg" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%;" /></span></p><p><br /></p></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/碳化硅"><span class='glyphicon glyphicon-tag'></span> 碳化硅</a> </li> <li> <a href="/tag/mosfet"><span class='glyphicon glyphicon-tag'></span> MOSFET</a> </li> </ul> Wed, 23 Feb 2022 09:17:41 +0000 judy 100557954 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557954.html#comments SiC MOSFET:桥式结构中栅极-源极间电压的动作 //www.jhzyg.net/content/2022/100557606.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p><span style="font-size: 16px;">从本文开始,我们将进入SiC功率元器件基础知识应用篇的第一弹“SiC MOSFET:桥式结构中栅极-源极间电压的动作”。</span></p><div><p><strong>前言</strong></p><p>MOSFET和IGBT等电源开关元器件被广泛应用于各种电源应用和电源线路中。另外,所使用的电路方式也多种多样,除单独使用外,还有串联连接、并联连接等多种使用方法。</p><p>其中,在将开关元件上下串联连接的桥式结构中,通常交替地导通与关断各个元器件。下面是常规的桥式结构同步方式boost电路,波形图是根据栅极信号交替地导通/关断的低边(LS)MOSFET和高边(HS)MOSFET的漏极-源极间电压(VDS)和漏极电流(ID)示例。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220211/1644561629761156.png" title="1644561629761156.png" alt="MOSFET.png" /></p></div><p>通过开关工作,流过各元件的电流和变化的电压以复杂的方式相互影响。尤其是在处理高电压高电流的电路中,受安装电路板和结线引起的寄生分量等影响,产生电压和电流的动作,并因此导致工作不稳定、效率下降,从而可能导致损耗增加、产生异常发热等问题。</p><p>近年来,SiC MOSFET等高性能功率元器件的应用,使得通过高速开关转换大功率成为可能,但在操作过程中,需要对开关工作有深入的了解。在该系列文章中,我们将着眼于MOSFET桥式结构中的各MOSFET的栅极-源极间电压的动作,以简单的同步方式boost电路为例,对以下内容进行探讨:</p><p>・MOSFET的桥式结构与同步方式boost电路</p><p>・栅极驱动电路与导通/关断工作</p><p>・因dVDS/dt、dID/dt而产生的电流和电压</p><p>・导通时栅极信号的动作</p><p>・关断时栅极信号的动作</p><p>文章来源:<a href="https://techclass.rohm.com.cn/knowledge/sic/a-sic/01-a-sic/8854" target="_self">Rohm</a></p></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/sic-mosfet-0"><span class='glyphicon glyphicon-tag'></span> SiC MOSFET</a> </li> <li> <a href="/tag/mosfet"><span class='glyphicon glyphicon-tag'></span> MOSFET</a> </li> </ul> Fri, 11 Feb 2022 06:41:38 +0000 judy 100557606 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557606.html#comments 东芝推出新款MOSFET栅极驱动IC,助力缩小设备尺寸 //www.jhzyg.net/content/2022/100557492.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p><em>TCK42xG系列支持外部N沟道MOSFET的背对背连接</em></p><p>东芝电子元件及存储装置株式会社(“东芝”)今日宣布,推出其面向20V电源线路的新款“<a href="https://toshiba-semicon-storage.com/parametric?region=apc&amp;lang=zh_cn&amp;code=param_616&amp;p=50&amp;i=1&amp;sort=0,asc&amp;cc=0d,1d,39d,31h,3d,22d,23d,24d,30d,25d,5d,6d,7d,40d,41d,26d,42d,8d,9d,10d,11d,12d,13d,14d,27d,28d,15d,17d,29d,32h,33h,34h,35h,36h,37h,38h">TCK42xG系列</a>”MOSFET栅极驱动IC中的首款产品---“<a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.TCK421G.html">TCK421G</a>”。该系列器件专门用于控制外部N沟道MOSFET的栅极电压(基于输入电压),同时具备过压锁定功能。新产品于今日开始支持批量出货。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220209/1644373683735935.png" title="1644373683735935.png" alt="TCK421G.png" /></p><p>通过与<a href="https://toshiba-semicon-storage.com/cn/semiconductor/knowledge/faq/liner_load-switch-ics/load-switch-ics12.html">背对背连接</a>的外部N沟道MOSFET相配合,TCK421G适用于配置具有反向电流阻断功能的电源多路复用器电路或负载开关电路。它内置电荷泵电路,支持2.7V至28V的宽输入电压范围,经过间歇操作,为外部MOSFET的栅极-源极电压提供稳定电压。这种方式允许大电流的切换。</p><p> TCK421G采用WCSP6G[1]封装,是行业最小的封装之一[2]。这便于TCK421G在可穿戴设备和智能手机等小型设备上实现高密度贴装,从而缩小上述设备的尺寸。</p><p>东芝将继续开发TCK42xG系列,并计划推出总共六款产品。TCK42xG系列的过压锁定将支持5V至24V的输入电压。可提供5.6V和10V两种类型的栅极输出电压,用于外部MOSFET中不同的栅源电压。过压锁定和栅极输出电压可以根据用户具体设备进行选择。</p><p><strong>应用:</strong></p><p>-    可穿戴设备</p><p>-    智能手机</p><p>-    笔记本电脑、平板电脑</p><p>-    存储设备等</p><p><strong>新产品系列特性:</strong></p><p>-    内置电荷泵电路,栅极-源极电压(5.6V、10V)取决于输入电压</p><p>-    过压锁定支持5V至24V</p><p>-    低输入关断电流:当VIN=5V,Ta=-40℃至85℃时,IQ(OFF)=0.5μA(最大值)</p><p><strong> 主要规格:</strong></p><p> (除非另有说明,Ta=25℃)</p><table cellspacing="0" cellpadding="0" width="604"><tbody><tr style=";height:25px" class="firstRow"><td width="444" colspan="3" style="border: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体">器件型号</span></p></td><td width="161" style="border-top: 1px solid windowtext; border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-image: initial; border-left: none; padding: 0px 7px;" height="25"><p style="text-align:center"><a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.TCK421G.html">TCK421G</a></p></td></tr><tr style=";height:25px"><td width="101" rowspan="2" style="border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-left: 1px solid windowtext; border-image: initial; border-top: none; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">封装</span></p></td><td width="343" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">名称</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">WCSP6G</p></td></tr><tr style=";height:25px"><td width="343" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">尺寸(</span><span style=";color:black">mm</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">1.2<span style=";font-family:宋体">×</span>0.8<span style=";font-family:宋体">(典型值)</span></p><p style="text-align:center"><span style=";font-family:宋体">厚度=</span>0.35<span style=";font-family:宋体">(最大值)</span></p></td></tr><tr style=";height:25px"><td width="101" style="border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-left: 1px solid windowtext; border-image: initial; border-top: none; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">工作范围</span></p></td><td width="183" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">输入电压</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">T</span><span style="font-size:9px;color:black">a</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">-40</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">至</span><span style=";color:black">85</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">2.7<span style=";font-family:宋体">至</span>28</p></td></tr><tr style=";height:25px"><td width="101" rowspan="16" style="border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-left: 1px solid windowtext; border-image: initial; border-top: none; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">电气特性</span></p></td><td width="183" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN UVLO</span><span style=";font-family:宋体;color:black">阈值,</span><span style=";color:black">V</span><span style="font-size:9px;color:black">out</span><span style=";font-family:宋体;color:black">下降</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN_UVLO</span><span style=";font-family:宋体;color:black">典型值/最大值(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">T</span><span style="font-size:9px;color:black">a</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">-40</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">至</span><span style=";color:black">85</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">时,</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN_UVLO</span><span style=";font-family:宋体;color:black">最大值</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">2.0<span style=";font-family:宋体">/</span>2.5</p></td></tr><tr style=";height:25px"><td width="183" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN UVLO</span><span style=";font-family:宋体;color:black">滞后</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN_UVhyst</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">–</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">0.2</p></td></tr><tr style=";height:25px"><td width="183" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN OVLO</span><span style=";font-family:宋体;color:black">阈值,</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">out</span><span style=";font-family:宋体;color:black">下降</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN_OVLO</span><span style=";font-family:宋体;color:black">最小值/最大值(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">T</span><span style="font-size:9px;color:black">a</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">-40</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">至</span><span style=";color:black">85</span><span style=";font-family:宋体;color:black">℃时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">22.34<span style=";font-family:宋体">/</span>24.05</p></td></tr><tr style=";height:25px"><td width="183" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN OVLO</span><span style=";font-family:宋体;color:black">滞后</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN_OVhyst</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">–</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">0.12</p></td></tr><tr style=";height:25px"><td width="183" rowspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">输入静态电流</span></p><p style="text-align:center"><span style=";font-family:宋体;color:black">(通态)</span><sup><span style=";color:black">[3]</span></sup></p><p style="text-align:center"><span style=";color:black">I</span><span style="font-size:9px;color:black">Q(ON)</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">μA</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">5V</span><span style=";font-family:宋体;color:black">时</span><span style="text-decoration:line-throughtext-decoration:line-through;"></span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">140</p></td></tr><tr style=";height:25px"><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">12V</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">185</p></td></tr><tr style=";height:25px"><td width="183" rowspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">待机电流(关断)</span></p><p style="text-align:center"><span style=";color:black">I</span><span style="font-size:9px;color:black">Q(OFF)</span><span style=";font-family:宋体;color:black">最大值(</span><span style=";color:black">μA</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">5V</span><span style=";font-family:宋体;color:black">,</span><span style=";color:black">T</span><span style="font-size:9px;color:black">a</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">-40</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">至</span><span style=";color:black">85</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">0.5</p></td></tr><tr style=";height:25px"><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">12V</span><span style=";font-family:宋体;color:black">,</span><span style=";color:black">T</span><span style="font-size:9px;color:black">a</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">-40</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">至</span><span style=";color:black">85</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">0.9</p></td></tr><tr style=";height:25px"><td width="183" rowspan="5" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">栅极驱动电压</span></p><p style="text-align:center"><span style=";font-family:宋体;color:black">(</span><span style=";color:black">V</span><span style="font-size:9px;color:black">GATE1</span><span style=";color:black">-V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">)</span></p><p style="text-align:center"><span style=";font-family:宋体;color:black">(</span><span style=";color:black">V</span><span style="font-size:9px;color:black">GATE2</span><span style=";color:black">-V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">)</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">GS</span><span style=";font-family:宋体;color:black">最小值/典型值/最大值(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">2.7V</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">8<span style=";font-family:宋体">/</span>9.2<span style=";font-family:宋体">/</span>10</p></td></tr><tr style=";height:25px"><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">5V</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">9<span style=";font-family:宋体">/</span>10<span style=";font-family:宋体">/</span>11</p></td></tr><tr style=";height:25px"><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">9V</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">9<span style=";font-family:宋体">/</span>10<span style=";font-family:宋体">/</span>11</p></td></tr><tr style=";height:25px"><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">12V</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">9<span style=";font-family:宋体">/</span>10<span style=";font-family:宋体">/</span>11</p></td></tr><tr style=";height:25px"><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">20V</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">9<span style=";font-family:宋体">/</span>10<span style=";font-family:宋体">/</span>11</p></td></tr><tr style=";height:25px"><td width="183" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">GS</span><span style=";font-family:宋体;color:black">导通时间</span></p><p style="text-align:center"><span style=";color:black">t</span><span style="font-size:9px;color:black">ON</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">ms</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">5V</span><span style=";font-family:宋体;color:black">时,</span></p><p style="text-align:center"><span style=";color:black">C</span><span style="font-size:9px;color:black">GATE1,2</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">4000pF</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">2.9</p></td></tr><tr style=";height:25px"><td width="183" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">GS</span><span style=";font-family:宋体;color:black">关断时间</span></p><p style="text-align:center"><span style=";color:black">t</span><span style="font-size:9px;color:black">OFF</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">μs</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">IN</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">5V</span><span style=";font-family:宋体;color:black">,</span></p><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">C</span><span style="font-size:9px;color:black">GATE1,2</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">4000pF</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">52</p></td></tr><tr style=";height:25px"><td width="183" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";color:black">OVLO V</span><span style="font-size:9px;color:black">GS</span><span style=";font-family:宋体;color:black">关断时间</span></p><p style="text-align:center"><span style=";color:black">t</span><span style="font-size:9px;color:black">OVP</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">μs</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">当</span><span style=";color:black">C</span><span style="font-size:9px;color:black">GATE1,2</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">4000pF</span><span style=";font-family:宋体;color:black">时</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center">34</p></td></tr><tr style=";height:25px"><td width="444" colspan="3" style="border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-left: 1px solid windowtext; border-image: initial; border-top: none; background: rgb(242, 242, 242); padding: 0px 7px;" height="25"><p style="text-align:center"><span style=";font-family:宋体;color:black">库存查询与购买</span></p></td><td width="161" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="25"><p style="text-align:center"><a href="https://toshiba-semicon-storage.com/cn/semiconductor/where-to-buy/stockcheck.TCK421G.html"><span style=";font-family:宋体">在线购买</span></a></p></td></tr></tbody></table><p>注:</p><p>[1] 1.2mm×0.8mm</p><p>[2] 在MOSFET栅极驱动IC中。截至2022年2月的东芝调查。</p><p>[3] 不含控制端电流(ICT)。</p><p> 如需了解相关新产品的更多信息,请访问以下网址:</p><p><strong>TCK421G</strong></p><p><a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.TCK421G.html">https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.TCK421G.html</a></p><p><strong> TCK42xG系列</strong></p><p><a href="https://toshiba-semicon-storage.com/parametric?region=apc&amp;lang=zh_cn&amp;code=param_616&amp;p=50&amp;i=1&amp;sort=0,asc&amp;cc=0d,1d,39d,31h,3d,22d,23d,24d,30d,25d,5d,6d,7d,40d,41d,26d,42d,8d,9d,10d,11d,12d,13d,14d,27d,28d,15d,17d,29d,32h,33h,34h,35h,36h,37h,38h&amp;ci=TCK421G">https://toshiba-semicon-storage.com/parametric?region=apc&amp;lang=zh_cn&amp;code=param_616&amp;p=50&amp;i=1&amp;sort=0,asc&amp;cc=0d,1d,39d,31h,3d,22d,23d,24d,30d,25d,5d,6d,7d,40d,41d,26d,42d,8d,9d,10d,11d,12d,13d,14d,27d,28d,15d,17d,29d,32h,33h,34h,35h,36h,37h,38h&amp;ci=TCK421G</a></p><p> 如需了解相关新产品在线分销商网站的供货情况,请访问以下网址:</p><p><strong>TCK421G</strong></p><p><a href="https://toshiba-semicon-storage.com/cn/semiconductor/where-to-buy/stockcheck.TCK421G.html">https://toshiba-semicon-storage.com/cn/semiconductor/where-to-buy/stockcheck.TCK421G.html</a></p><p> *本文提及的公司名称、产品名称和服务名称可能是其各自公司的商标。</p><p>*本文档中的产品价格和规格、服务内容和联系方式等信息,在公告之日仍为最新信息,但如有变更,恕不另行通知。</p><p><strong> 关于东芝电子元件及存储装置株式会社</strong></p><p>东芝电子元件及存储装置株式会社是先进的半导体和存储解决方案的领先供应商,公司累积了半个多世纪的经验和创新,为客户和合作伙伴提供分立半导体、系统LSI和HDD领域的杰出解决方案。</p><p>公司23,100名员工遍布世界各地,致力于实现产品价值的最大化,东芝电子元件及存储装置株式会社十分注重与客户的密切协作,旨在促进价值共创,共同开拓新市场,公司现已拥有超过7,110亿日元(62亿美元)的年销售额,期待为世界各地的人们建设更美好的未来并做出贡献。</p><p>如需了解有关东芝电子元件及存储装置株式会社的更多信息,请访问以下网址:<a href="https://toshiba-semicon-storage.com/">https://toshiba-semicon-storage.com</a></p></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/东芝"><span class='glyphicon glyphicon-tag'></span> 东芝</a> </li> <li> <a href="/tag/tck421g"><span class='glyphicon glyphicon-tag'></span> TCK421G</a> </li> <li> <a href="/tag/mosfet"><span class='glyphicon glyphicon-tag'></span> MOSFET</a> </li> </ul> Wed, 09 Feb 2022 02:27:33 +0000 judy 100557492 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557492.html#comments 双极结型晶体管——MOSFET的挑战者 //www.jhzyg.net/content/2022/100556798.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p><em>作者:儒卓力标准产品产品经理Thomas Bolz</em></p><p>数字开关通常使用MOSFET来创建,但是对于低饱和电压的开关模型,双极结型晶体管已成为不容忽视的替代方案。对于低电压和低电流的应用,它们不仅可以提供出色的电流放大效果,还具有成本优势。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220107/1641527408307849.png" title="1641527408307849.png" alt="图1.png" /></p><p style="text-align: center;">双极结型晶体管可为移动设备提供更长的使用寿命。</p><p style="text-align: center;"> 图:IBPhotography/Shutterstock</p><p>在负载开关应用中,晶体管需要精确地放大基极电流,使输出电压接近零,以便仅测量晶体管的饱和电压。MOSFET通常用于这项用途,因为它们不需要任何底层控制器作为电压控制组件。另一方面,双极结型晶体管(BJT)是需要能够连续传输电流的底层控制器的电流控制组件。</p><p>不过,具有更高的电流增益(hFE)和更低的饱和电压(VCEsat)的双极结型晶体管可以实现更低的基极电流。它们较高的电流增益降低了基极电流的要求,由此可以由单片机直接开关。例如,如果晶体管需要传导1 A电流并且电流增益为100,则基极电流至少需要10 mA,以确保晶体管饱和。如果晶体管可以提供500的电流增益,则2 mA电流就足够了。</p><p>而且,双极结型晶体管还可通过基极偏置电阻器和基极-发射极电压(VBE)大大减少损耗。如果晶体管用作低频开关,则较低的饱和压降可以减少集电极-发射极的功耗,并在标准化芯片表面上实现更高的集电极电流(IC)。</p><p>因此,对于全导通状态,低饱和电压双极结型晶体管只需要0.3至0.9 V的低基极-发射极电压,非常适合低压开关应用。控制电压适用于整个工作温度范围。</p><p>如果双极结型晶体管用作饱和开关,还会影响集电极区域的电导率,从而在饱和时大幅降低集电极-发射极的电阻(RCE(sat))。MOSFET则不具有这种电导率影响,但这确实增加了基极的反向恢复时间,意味着开关周期变得更长。</p><p>由于渡越频率的缘故,双极结型晶体管只能用于涉及几百kHz频率的应用。使用渡越频率除以电流增益因数则产生截止频率。这被定义为电流增益降至–3 dB的阈值(即0.707因数)。因此在应用中与截止频率保持一定距离是很重要的。</p><section xmlns="http://www.w3.org/1999/xhtml"><section label="Copyleft 2018 iPaiban All lefts Reserved (本样式已做版权保护,未经正式授权不允许任何第三方编辑器、企业、个人使用,违者必纠)" donone="shifuMouseDownPayStyle('shifu_qmi_042')"><section><section><section><p><strong>延长移动设备的使用寿命</strong></p></section></section></section></section></section><p>由于低饱和电压双极结型晶体管具有高增益性能,其效率也比常规的BJT和MOSFET更高,因此当与基极电阻器结合使用时,它们可以替代MOSFET和肖特基二极管。这样提供了更长的电池充电使用寿命和降低的组件成本优势,尤其是在移动和/或电池供电应用(例如电动牙刷、剃须刀或手持式搅拌器)中。相比ESD容限超过8,000 V的MOSFET,双极结型晶体管对静电放电(ESD)的敏感性要低得多,并且它们还具有防止电压尖峰的内部保护功能。</p><p> 晶体管的增益随着温度的升高而进一步增加。同时,在最大允许基极电流下,基极-发射极电压相对于正向电压(VBE(sat))的占比减小了。结果,对于BJT,饱和时的集电极-发射极电阻(RCE(sat))低于相近MOSFET的导通电阻(RDS(on))。与芯片表面积相同的MOSFET相比,BJT在较高的电流密度和/或在连续电流下产生的热量也较少。</p><p> 同样,在给定的负载电流下,饱和电压仍与功率损耗成比例。因此,低饱和电压双极结型晶体管具有较低的功率损耗,从而降低了散热需求。考虑到总体功率损耗,控制基极所产生的损耗是不容忽视的。当使用具有较高增益的低饱和电压双极结型晶体管时,它们也比较低。</p><p> 双极结型晶体管的另一个优点是它们可以在两个方向上截止,从而无需额外的反并联MOSFET。BJT晶体管也更便宜,相比MOSFET具有明显的成本优势。</p><p><strong>高开关性能</strong><br /></p><p>BJT可以提供优于最大允许功率损耗很多倍的开关性能,因为作为开关工作的晶体管具有两个固定的工作点。如果足够的基极电流流入第一个,将导致集电极电流闭合开关,这个开关两端仅存在残余电压降。由于第二工作点的基极电流为零,因此具有全部工作电压的晶体管用作阻断。两个工作点之间的过渡非常快速。这样可以将负载线放置在适当的位置,使得从导通到受阻晶体管(反之亦然)的过渡足够快速以穿过功率损耗双曲线,且不会发生得太频繁。固定工作点仅需位于双曲线的下方。<br /></p><p> 由于BJT能够在线性范围内进行非常快速的开关运作,并提供具有高电流密度的高脉冲电流,因此它们适合用作控制MOSFET的驱动器。相比专用IC驱动器解决方案,这可以减小尺寸并降低成本。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220107/1641527444107248.png" title="1641527444107248.png" alt="BC847BFZ.png" /></p><p style="text-align: center;">Diodes的45 V NPN小信号双极结型晶体管BC847BFZ相比同类DFN1006、SOT883和SOT1123组件体积减小40%,并具有更高的性能。</p><p style="text-align: center;"> 图源:Diodes</p><section xmlns="http://www.w3.org/1999/xhtml"><section label="Copyleft 2018 iPaiban All lefts Reserved (本样式已做版权保护,未经正式授权不允许任何第三方编辑器、企业、个人使用,违者必纠)" donone="shifuMouseDownPayStyle('shifu_qmi_042')"><section><section><section><p><strong>小组件、高性能</strong></p></section></section></section></section></section><p>低饱和电压双极结型晶体管通常在SOT封装中具有12至100 V的最大集电极-发射极电压(VCEO)和高达几安培的集电极电流。目前,世界上最小的双极结型晶体管采用了Diodes的DFN0606-3超小型封装。45 V NPN小信号双极结型晶体管BC847BFZ的占位面积仅为0.36 mm2,高度仅为0.4 mm,相比相近的DFN1006、SOT883和SOT1123组件体积减小了40%,并且性能优于外形更大的相近晶体管产品。这是因为无铅封装允许实现更高的功率密度,而热性能为135°C/W。Diodes的产品模型允许低压应用实现低于1 V的电压开关操作,可让移动设备以最小的功率完全开启。它们具有100 mA的集电极电流和925 mW的功率损耗,特别适合智能手表、健身工具等可穿戴设备,以及智能手机和平板电脑等其他消费类设备。相对应的PNP晶体管产品是BC857BZ。</p><p><strong>结论</strong></p><p>对于许多电路应用而言,具有低饱和电压的BJT不仅可以替代MOSFET,而且还具有许多优势——例如导通电阻低、控制电压低于1 V、具有出色的温度稳定性以及对ESD不敏感。由于BJT可以在两个方向上阻断电流,因此可以省去第二个MOSFET。低饱和电压双极结型晶体管的功率损耗和产生的热量输出较低,而且价格也比较低。</p></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/晶体管"><span class='glyphicon glyphicon-tag'></span> 晶体管</a> </li> <li> <a href="/tag/mosfet"><span class='glyphicon glyphicon-tag'></span> MOSFET</a> </li> </ul> Fri, 07 Jan 2022 03:51:12 +0000 judy 100556798 at //www.jhzyg.net //www.jhzyg.net/content/2022/100556798.html#comments