电子创新元件网 - SiC - 德赢平台,德赢ac米兰官方区域合作伙伴 //www.jhzyg.net/tag/sic zh-hans 在半导体开关中使用共源共栅拓扑消除米勒效应 //www.jhzyg.net/content/2022/100557912.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>物理法则无法击败。电阻必然消耗电能,并产生热量和压降。电容器要消耗时间存储电荷,再花时间释放电荷。电感器要花时间制造电磁场并让其坍塌。我们对此无能为力,因此,自热离子管诞生之日起,电子产品设计师就学会了通过开发巧妙的电路拓扑来解决这些因素。事实表明,物理就是物理,过去对管适用的规则也同样适用于今天的高性能半导体。</p> <p><strong> 米勒电容如何限制高频放大</strong> </p> <p>以米勒效应为例。在20世纪20年代,美国电子工程师约翰·弥尔顿·米勒发现简单的真空三极管当作为放大器使用时,由于网格和阳极之间存在内部电容,会出现一个问题。这个电容通过在电容的阻抗随着不断升高的运行频率而降低时施加越来越高的负反馈,降低放大器的带宽。</p> <p>米勒认识到,如图1所示将两个三极管串联(如级联型三极管或共源共栅拓扑)可能会降低从输入到输出的总电容。鉴于上管排电压固定,上三极管的阴极电压通过下三极管控制。当开发出带有内部帘栅的四极管后,这种内部电容及其相关效应会降低,从而可以构建可以在数百兆赫下运行的单管放大器。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100557912-243604-tu1yuanshidelianjisanjiguanhuogongyuangongzhadianlu.png" alt="" /></center> <p align="center"><strong>图1:原始的联级三极管或共源共栅电路</strong></p> <p><strong> 米勒效应的回归</strong> </p> <p>随着设计师开始用固态半导体代替热离子管,米勒效应也回归了,而这又一次开始限制高频运行。</p> <p>为什么会这样?在基于MOSFET的开关电路中,米勒效应限制了开关速度,因为驱动电路必须以一种低损耗的可靠方式为输入电容充电和放电。这种米勒电容(即CGD)的效应会因栅极电压而异。</p> <p>例如,考虑增强模式的MOSFET开关,它在栅极电压为0V时关闭。总的栅极输入电容表现为一个网络(请参见图2),包括CGS、CGD、CDS、负载ZL和散装电容CBULK。CGD两端还有正电压。当MOSFET打开时,漏电压降至接近零,总电容变成与CGS并联的CGD,且与关态相比跨CGD有负电压。在从开到关再从关到开的开关过程中,输入电容必须在这些条件之间交换。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100557912-243605-tu2guanbihedakaishidemosfetshurudianrongxiangtong.png" alt="" /></center> <p align="center"><strong>图2:关闭和打开时的MOSFET输入电容相同</strong></p> <p>MOSFET栅极开关波形正向部分的平台期(参见图3)代表两个输入电容状态间的转换,因为驱动器突然必须努力工作,从而使开关转换变慢。为了加剧效应,如漏极压降,它会尝试“推动”栅极负压经过CGD,与正的开态电压命令相抗。当驱动MOSFET关闭时,此过程会反过来。CGD会尝试“拉动”栅极正压,这就是为什么鼓励处理MOSFET和IGBT的设计师使用负的关态栅极电压抵消这种效应。这会转而提高驱动栅极所需的功率。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100557912-243606-tu3zhajiqudongdianyademiledianrongpingtai.png" alt="" /></center> <p align="center"><strong>图3:栅极驱动电压的米勒电容“平台”</strong></p> <p><strong> 控制栅漏电容</strong> </p> <p>器件的栅漏电容CGD会受到半导体器件的体系结构的影响,因此会因横向或纵向构建而异。可以尽量降低CGD以获得低压MOSFET,但是在高压下它可以变成一个问题,尤其是当设计师想要使用碳化硅(SiC)或氮化镓(GaN)等材料构建宽带隙器件时。有些物理规律是无法规避的:这些技术的开关速度仍受其米勒电容的限制,对抗米勒效应的最佳方式是使用共源共栅电路拓扑。</p> <p><strong> 现代化的共源共栅</strong> </p> <p>基本的SiC开关使用结FET(JFET)结构。如果JFET是作为垂直器件构建的,其CGD可能达到有利的低点,而其漏源电容CDS还可以更低。但是,JFET是常开型器件,其栅极为0V,需要负的栅极电压才能关闭。这是桥电路中的问题,在该电路中,所有器件默认为开态,适用瞬时功率。使用常关型器件构建此类电路会更好,该器件可以通过布置共源共栅拓扑结构的Si MOSFET和SiC JFET(图4)来实现。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100557912-243607-tu4huotanhuahuogongyuangongzha.png" alt="" /></center> <p align="center"><strong>图4:硅/碳化硅共源共栅</strong></p> <p>当MOSFET栅极和源极电压为0V时,漏极电压升高。JFET栅极也为0V,因此当源极电压从MOSFET漏极电压升高到10 V时,JFET会见证栅极和源极之间出现-10 V电压,因此开关关闭。当MOSFET栅极电压为正时,它会打开,因此让JFET的栅极和源极短接,从而打开JFET。这个电路拓扑会创建所需的常关型器件,MOSFET栅极电压为0V。该拓扑还意味着串联的输入输出电容包括CDS,以实现JFET,它的值接近于零,从而降低了米勒效应,以及它对高频增益的影响。</p> <p><strong> 其他优势</strong> </p> <p>在开关时,Si MOSFET漏极电压是JFET漏极电压经过几乎为零的JFET漏源电容CDS和MOSFET的非零CDS“倾泻而下”,因此MOSFET漏极保持低压。这意味着,MOSFET可以是低压类型,且漏极和源极之间维持非常低的导通电阻,且栅极驱动更加容易。还有一个优势,那就是低压MOSFET的体二极管的前向压降非常低,且恢复速度快。JFET没有体二极管,因此当需要第三象限反向开关导电时,如在换流桥电路或同步整流中,MOSFET体二极管会导电。这会将JFET栅源限制到约+0.6 V,从而确保它在最大程度上打开,这可实现反向电流和低压降。</p> <p><strong> 米勒效应的终结</strong> </p> <p>SiC共源共栅拓扑解决了米勒电容问题,且同时实现了简单的栅极驱动、常关运行和高性能体二极管。这与SiC MOSFET不同,在SiC MOSFET中,体二极管特征差,甚至与GaN HEMT也不同,后者有高CDS。物理特征的不变性导致热离子器件中产生限制高频增益的米勒效应,这也适用于半导体器件。不过,这种不变性也意味着基于共源共栅的问题解决方案在现代化的SiC器件中与在老式管中同样适用。似乎改变越多,不变的也越多。</p> <p>文章来源: UnitedSiC</p> </div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/sic"><span class='glyphicon glyphicon-tag'></span> SiC</a> </li> <li> <a href="/tag/米勒电容"><span class='glyphicon glyphicon-tag'></span> 米勒电容</a> </li> <li> <a href="/tag/unitedsic"><span class='glyphicon glyphicon-tag'></span> UnitedSiC</a> </li> </ul> Tue, 22 Feb 2022 06:58:46 +0000 judy 100557912 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557912.html#comments 意法半导体双通道栅极驱动器优化并简化SiC和IGBT开关电路 //www.jhzyg.net/content/2022/100557704.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>意法半导体新推出的两款双通道电隔离IGBT和碳化硅(SiC) MOSFET栅极驱动器在高压电力变换和工业应用中节省空间,简化电路设计。</p><p>IGBT驱动器STGAP2HD 和SiC MOSFET驱动器STGAP2SICD 利用意法半导体最新的电隔离技术,采用SO-36W 宽体封装,能够耐受6kV瞬变电压。此外,±100V/ns dv/dt 瞬变耐量可防止在高电噪声工况下发生杂散导通现象。这两款驱动器都提供最高4A的栅极控制信号,双输出引脚为栅极驱动带来更多灵活性,支持开通和关断时间单独调整。有源米勒钳位功能可防止栅极在半桥拓扑快速换向过程中出现尖峰电压。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220215/1644906257883824.jpg" title="1644906257883824.jpg" alt="STGAP2HD.jpg" /></p><p>电路保护功能包括过热保护、安全操作看门狗,每个通道都有欠压锁定 (UVLO)机制,防止驱动器在危险的低效模式下启动。按照 SiC MOSFET的技术要求,STGAP2SICD 提高了 UVLO的阈值电压,以优化晶体管的能效。</p><p>每款器件都有一个在双低边不对称半桥应用中同时开通两个通道的iLOCK 引脚和防止在传统的半桥电路中出现直通电流的互锁保护机制。这两款驱动器在高压轨上的额定电压都达到 1200V,输入到输出传播时间为 75ns,PWM控制精度很高。</p><p>意法半导体的新双通道电流隔离栅极驱动器具有专用的关断引脚和制动引脚,以及待机省电引脚,目标应用包括电源、电机、变频器、焊机和充电器。此外,输入引脚兼容最低3.3V的TTL和 CMOS 逻辑信号,以简化驱动器与主微控制器或DSP处理器的连接。</p><p>STGAP2HD 和 STGAP2SICD 现已投产。<a href="https://estore.st.com/en/evalstgap2hdm-cpn.html?icmp=tt24859_gl_pron_jan2022">EVALSTGAP2HDM</a> 和 <a href="https://estore.st.com/en/evalstgap2sicd-cpn.html?icmp=tt24859_gl_pron_jan2022">EVALSTGAP2SICD</a>演示板也已上市,用于快速评估驱动器在驱动半桥功率级时的驱动特性。</p><p>详情访问<a href="https://www.st.com/en/power-management/gate-drivers.html?icmp=tt24859_gl_pron_jan2022">www.st.com/stdrive</a></p><p><strong>关于意法半导体</strong></p><p>意法半导体拥有48,000名半导体技术的创造者和创新者,掌握半导体供应链和最先进的制造设备。作为一家独立的半导体设备制造商,意法半导体与二十多万家客户、数千名合作伙伴一起研发产品和解决方案,共同构建生态系统,帮助他们更好地应对各种挑战和新机遇,满足世界对可持续发展的更高需求。意法半导体的技术让人们的出行更智能,电力和能源管理更高效,物联网和5G技术应用更广泛。意法半导体承诺将于2027年实现碳中和。详情请浏览意法半导体公司网站:<a href="http://www.st.com/">www.st.com</a>。</p></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/意法半导体"><span class='glyphicon glyphicon-tag'></span> 意法半导体</a> </li> <li> <a href="/tag/sic"><span class='glyphicon glyphicon-tag'></span> SiC</a> </li> <li> <a href="/tag/igbt"><span class='glyphicon glyphicon-tag'></span> IGBT</a> </li> <li> <a href="/tag/stgap2hd"><span class='glyphicon glyphicon-tag'></span> STGAP2HD</a> </li> </ul> Tue, 15 Feb 2022 06:24:04 +0000 judy 100557704 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557704.html#comments 理想开关自身会带来挑战 //www.jhzyg.net/content/2022/100557277.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>随着我们的产品接近边沿速率超快的理想半导体开关,电压过冲和振铃开始成为问题。适用于SiC FET的简单RC缓冲电路可以解决这些问题,并带来更高的效率增益。</p> <p>若要问功率转换器设计师,他们想要怎样的半导体开关,那回答可能是:“有低导通电阻、高关闭电阻,且两种状态间的转换尽可能快。”当然,这一想法的核心,简单来说,就是功率耗损低。SiC FET接近这种理想开关,750V级该器件的导通电阻现在还不到6毫欧,边沿速率以纳秒计,数千瓦的转换器和逆变器的效率值有望达到99.5%以上。</p> <p>若是稍加考虑,设计师还会加上几个“顺便”要求,如栅极驱动简单、额定电压高、第三象限高效运行、雪崩能量高、短路额定值高、热阻低、系统成本低等若干项。幸运的是,SiC FET也兼具这些优势,其性能表征十分出众。</p> <p>因此,设计师感到满意,直至他们在最大边沿速率下将SiC FET松散地插在电路试验板上,这时会立即冒出一股烟,可此时“供电电压远不到最大值,负载也轻!”但是配线电感和连接电感又是多少呢?在惊人的3000A/µs电流边沿速率下,电感仅100nH,根据人们熟知的等式V = -L.di/dt,产生的电压峰值为300V,从而增加开关应力,引起持续数微秒的高频振铃,从而摧毁了局部无线电接收,只一小会儿,SiC FET就毁坏了。<br /> </p><center><img src="//www.jhzyg.net/files/2022-01/wen_zhang_/100557277-240856-01.png" alt="" /></center> <p>现在,我们认识到,除非我们向着零连接电感努力,或者苛刻地规定开关额定电压并实现极大的电磁干扰滤波,否则就需要控制边沿速率并抑制振铃。一直以来,限制电压峰值的传统方法是添加串联栅极电阻RG(OFF),但是这会带来问题,造成波形延迟,进而限制占空比和高频运行,而高频运行是宽带隙开关值得称道的优势之一。栅极电阻还会显著增加开关损耗,而对振铃毫无效果。</p> <p>一个更好的解决方案是使用简单的RC缓冲电路。面对IGBT通常需要的大型热电阻电容网络,您可能会犹豫,但是对于SiC FET,情况则有所不同。它主要用于抑制连接电感和器件电容之间的谐振,在采用SiC FET时,谐振极低。这意味着通常只需要大约200pF(2倍或3倍Coss(er))电容与数欧的串联电阻就可以进行抑制。缓冲电路电阻会损耗一定功率,但是该电路网的作用是在软硬开关应用中减少关闭电压和电流之间的交叠,以便在此转换中切实减少损耗。</p> <p>缓冲电路会在打开时产生一定损耗,因此,要了解整体情况,应该考虑总损耗E(ON) + E(OFF)。下图显示的是40毫欧下的E(TOTAL)。蓝线表示的是无缓冲电路,RG(ON)和RG(OFF)均为5欧的情况。黄线表示的是RG(ON)为5欧,RG(OFF)为零欧,并使用200pF/10欧缓冲电路的情况。在40A时使用缓冲电路明显只有好处,当在40kHz下运行时损耗会减少约10.9W。在负载轻的时候,情况反过来了,但是在这些级别下,损耗不大。<br /> </p><center><img src="//www.jhzyg.net/files/2022-01/wen_zhang_/100557277-240857-02.png" alt="" /></center> <p>缓冲电路是一个很好的解决方案,但它会不会成为一项不可忽视的开支?如果在典型的应用中评估缓冲电路电阻耗费的能量,则每个循环可能约为120µJ,相当于在40kHz下耗费超过5W的能量。然而,测试表明,这些能量中大部分是在打开时通过线性区过渡期间在SiC FET沟道中损耗的,而不是在缓冲电路电阻上损耗的。因而在缓冲电路中使用1W电阻通常就足够了,在这个功率级别,表面安装类型就足以轻松应对了。电容器的体积不会大。</p> <p>现在,设计师可以满意地表示,他们解决了通向完美开关的又一个难题。这个器件可以轻松便宜地运用,以降低过冲和振铃,而又不影响其他优势。</p> </div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/碳化硅"><span class='glyphicon glyphicon-tag'></span> 碳化硅</a> </li> <li> <a href="/tag/sic"><span class='glyphicon glyphicon-tag'></span> SiC</a> </li> <li> <a href="/tag/unitedsic"><span class='glyphicon glyphicon-tag'></span> UnitedSiC</a> </li> </ul> Mon, 24 Jan 2022 02:30:27 +0000 judy 100557277 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557277.html#comments SiC MOSFET:桥式结构中栅极-源极间电压的动作 //www.jhzyg.net/content/2022/100556884.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>从本文开始,我们将进入SiC功率元器件基础知识应用篇的第一弹“SiC MOSFET:桥式结构中栅极-源极间电压的动作”。</p><div><p><strong>前言</strong></p><p>MOSFET和IGBT等电源开关元器件被广泛应用于各种电源应用和电源线路中。另外,所使用的电路方式也多种多样,除单独使用外,还有串联连接、并联连接等多种使用方法。</p><p>其中,在将开关元件上下串联连接的桥式结构中,通常交替地导通与关断各个元器件。下面是常规的桥式结构同步方式boost电路,波形图是根据栅极信号交替地导通/关断的低边(LS)MOSFET和高边(HS)MOSFET的漏极-源极间电压(VDS)和漏极电流(ID)示例。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220111/1641869408340091.gif" title="1641869408340091.gif" alt="sic-ap-1-1_f1.gif" /></p><p>通过开关工作,流过各元件的电流和变化的电压以复杂的方式相互影响。尤其是在处理高电压高电流的电路中,受安装电路板和结线引起的寄生分量等影响,产生电压和电流的动作,并因此导致工作不稳定、效率下降,从而可能导致损耗增加、产生异常发热等问题。</p><p>近年来,SiC MOSFET等高性能功率元器件的应用,使得通过高速开关转换大功率成为可能,但在操作过程中,需要对开关工作有深入的了解。在该系列文章中,我们将着眼于MOSFET桥式结构中的各MOSFET的栅极-源极间电压的动作,以简单的同步方式boost电路为例,对以下内容进行探讨:</p><div><p>・MOSFET的桥式结构与同步方式boost电路</p><p>・栅极驱动电路与导通/关断工作</p><p>・因dVDS/dt、dID/dt而产生的电流和电压</p><p>・导通时栅极信号的动作</p><p>・关断时栅极信号的动作</p><p>文章来源:<a href="https://techclass.rohm.com.cn/knowledge/sic/a-sic/01-a-sic/8854" target="_self">Rohm</a></p></div></div></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/sic"><span class='glyphicon glyphicon-tag'></span> SiC</a> </li> <li> <a href="/tag/功率元器件"><span class='glyphicon glyphicon-tag'></span> 功率元器件</a> </li> </ul> Tue, 11 Jan 2022 02:50:55 +0000 judy 100556884 at //www.jhzyg.net //www.jhzyg.net/content/2022/100556884.html#comments 几种常见的沟槽结构SiC MOSFET类型 //www.jhzyg.net/content/2022/100556663.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p><em>作者:刘松 ,</em><a href="https://mp.weixin.qq.com/s/p-Aj50ZhNNOtNeCCXJRwug" target="_self"><em>松哥电源</em></a></p><p>SiC MOSFET沟槽结构将栅极埋入基体中形成垂直沟道,尽管其工艺复杂,单元一致性比平面结构差。但是,沟槽结构可以增加单元密度,没有JFET效应,寄生电容更小,开关速度快,开关损耗非常低;而且,通过选取合适沟道晶面以及优化设计的结构,可以实现最佳的沟道迁移率,明显降低导通电阻,因此,新一代SiC MOSFET主要研究和采用这种结构。</p><p>这种结构栅极沟槽底部氧化层的工作电场强度高,在高的反向偏置电压下,此处成为器件最薄弱的环节。沟槽结构SiC MOSFET的技术演进方向,就是采用优化的内部结构,减小沟槽底部氧化层工作电场强度,本文列出了一些常见结构。<br /></p><p><strong>1、Rohm的双沟槽结构</strong><br /></p><p>栅极沟槽底部氧化层外二侧P-体区下移,下移P-体区和沟槽底部附近的N-区漂移层的PN结,形成耗尽层,也就是空间电荷区,降低栅极沟槽底部氧化层内的工作电场强度,这是一种最为经典、实用的专利结构。<br /></p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641279083157262.jpg" title="1641279083157262.jpg" alt="图1 Rohm双沟槽结构及电场分布.JPG" /></p><p><strong>2、Infineon非对称沟槽结构</strong></p><p>栅极沟槽底部氧化层外P-体区单侧下移,半包裹栅极沟槽底部区域,下移P-体区和沟槽底部附近N-区漂移层的PN结,形成耗尽层、也就是空间电荷区,降低栅极沟槽底部氧化层内的工作电场强度。<br /></p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641279160700041.jpg" title="1641279160700041.jpg" alt="图2 Infineon非对称沟槽结构.JPG" /></p><p><strong>3、普渡大学Integral Oxide Protection综合氧化保护结构</strong></p><p>综合氧化保护结构IOP改进地方有3部分:整个栅极沟槽氧化层外,包括底部和侧壁,使用低掺杂薄层N-型SiC,把栅极氧化层隔开;栅极沟槽下部,再增加一层P+型SiC;P-体区和N-漂移层之间增加一层高掺杂N+型SiC。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641279189425607.jpg" title="1641279189425607.jpg" alt="图3 普渡大学IOP沟槽结构.JPG" /></p><p>器件处于反向偏置时,栅极沟槽下面新增PN结形成空间电荷区,也就是耗尽层,可以对栅极氧化层起到屏蔽电场作用,将栅极氧化层内最大电场转移到PN结,减小栅极氧化层内的工作电场,甚至让栅极氧化层电场减少到0,有效消除栅极氧化层被电场击穿可能性。</p><p>栅极沟槽侧壁薄层低掺杂N-型SiC,可以降低SiC-SiO 界面态对沟道电子散射作用,提高电子迁移率,降低器件导通电阻。器件导通时,P-体区和N-漂移层之间新增高掺杂N+型层,促进沟道电子进入漂移区后立即扩展,进一步降低导通电阻。<br /></p><p><strong>4、Mitsubishi沟槽结构</strong><br /></p><p>采用非对称沟槽结构,栅极沟槽底部区域有3个结构:底部P+电场限制结构,侧接地电场限制层(图4中沟槽底部左侧P区)、高浓度N+掺杂导电区(图4中沟槽底部右侧N+区)。栅极沟槽底部的P+电场限制结构和N-漂移层形成PN结,PN结的耗尽层、也就是空间电荷区,将加在栅极氧化层的电场强度降低到普通平面结构的水平,侧接地电场限制层将电场限制层连接到源极,形成侧接地,实现高速开关。高浓度掺杂导电区,降低电流通路的导通电阻。<br /></p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641279266367334.jpg" title="1641279266367334.jpg" alt="图4 Mitsubishi沟槽结构.JPG" /></p><p>其改进结构如图5所示,沟槽底部区域变为2个结构:沟槽底部的P+电场限制结构和沟槽底部周围的高浓度掺杂N+导电区(图5中沟槽底部二侧N+)。P+电场限制结构将加在栅极沟槽氧化层的电场强度降低,高浓度掺杂N+导电区降低电流通路的导通电阻。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641279305355776.jpg" title="1641279305355776.jpg" alt="图5 Mitsubishi改进沟槽结构.JPG" /></p><p><strong>5、Fuji Electric</strong></p><p>栅极沟槽二侧的P-体区部分下移,使用高掺杂P+;栅极沟槽底部氧化层外,增加掩埋的P+浮岛结构,和N-漂移层形成PN结,PN结的耗尽层、也就是空间电荷区,降低栅极沟槽底部氧化层内的工作电场强度。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641279348841257.jpg" title="1641279348841257.jpg" alt="图6 Fuji沟槽结构.JPG" /></p><p><strong>6、日本住友/丰田</strong></p><p>栅极沟槽二侧P-体区部分下移,使用高掺杂P+,在沟槽底部氧化层外附近区域,下移P+区截面积变宽,延伸到栅极沟槽底部氧化层外附近区域,让下移的P+区和栅极沟槽底部附近的N-漂移层形成PN结,PN结的耗尽层,降低栅极沟槽底部氧化层内的电场强度,沟槽采用V形结构。<br /></p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641279369215207.jpg" title="1641279369215207.jpg" alt="图7 日本住友、田沟槽结构.JPG" /></p><p><strong>7、日本Denso电装</strong></p><p>类似于住友的沟槽结构,只是改为U形沟槽。<br /></p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641279441228517.jpg" title="1641279441228517.jpg" alt="图8 日本Denso沟槽结构.JPG" /></p><p>总结:这些结构核心就是在栅极沟槽底部或栅极沟槽底部附近区域,增加P型结构,形成耗尽层(空间电荷区),从而,把栅极沟槽底部氧化层电场,部分转移到耗尽层中,减小栅极沟槽底部的电场。 </p><p><span style="color: rgb(255, 0, 0); font-size: 14px;">免责声明:本文为网络转载文章,转载此文目的在于传播相关技术知识,版权归原作者所有,如涉及侵权,请联系小编删除(联系邮箱:<a href="mailto:service@eetrend.com">service@eetrend.com</a> )。</span></p></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/sic"><span class='glyphicon glyphicon-tag'></span> SiC</a> </li> </ul> Tue, 04 Jan 2022 06:58:55 +0000 judy 100556663 at //www.jhzyg.net //www.jhzyg.net/content/2022/100556663.html#comments 用SiC FET固态断路器取代机械断路器可行吗? //www.jhzyg.net/content/2022/100556657.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p><span style="color: rgb(0, 112, 192);"><em>文章来源:</em> </span><a href="https://mp.weixin.qq.com/s/_sx4hedRhrvoHtKFAflsgA" target="_self" style="color: rgb(0, 112, 192); text-decoration: underline;"><span style="color: rgb(0, 112, 192);">UnitedSiC</span></a></p><p><em>机械断路器损耗低,但是速度慢而且会磨损。采用SiC FET的固态断路器可以解决这些问题且其损耗开始降低。</em></p><section><p>工程界有一句谚语:“会动的就会断。”我们都知道,机械部件通常是第一个出故障的,比如风扇或继电器,而在电路系统中,您需要一套进行前瞻性维护和更换这些部件的程序来“以防万一”。当机械部件在正常运行时的应力水平高,然后必须在紧急情况下做出可靠反应时,情况会更糟,例如与电动车电池串联的接触式断路器。</p></section><p>在这种情况下,运行电流可能达到数百安,而在断路器必须切断的短路情况下,电流可能达到数千安。电压很高,通常高于400V直流电,而且在故障电流中断时,由于连接电感,电压峰值还会更高。电压会造成电弧,电弧会让断路器触点汽化,而且由于是直流电,电弧会持续存在,还不像交流电一样存在能消除电弧的零点交叉。接通和断开的速度也慢,需要数十毫秒,从而允许在短路情况下通过能造成损坏的能量。随着断路器老化,它还会变得更慢,损耗更大。总而言之,大电流机械断路器面对着重重困难,因此必须打造得很坚固,有时还要使用奇特的方法清除电弧,如制造多股压缩气体气流或使用磁性灭弧线圈。<br /></p><p>自然而然地,人们设计出了固态断路器(SSCB)作为替代方案,并使用几乎所有可用的半导体技术进行制造,包括从MOSFET到IGBT、SCR和IGCT。它们很好地解决了电弧和机械磨损问题。它们的严重缺点在于压降,以IGBT为例,它在500A下可能会产生1.7V压降,从而造成糟糕的850W损耗。IGCT的压降可能较低,但是体积很大。MOSFET没有IGBT那样的“膝点”电压,但是有导通电阻。为了在IGBT基础上进行改进,该RDS(on)可能需要小于3.4毫欧,且额定电压高于400V,而目前还无法用单个MOSFET实现这一要求。多个MOSFET并联可以实现这一要求,但是成本也会剧增,而且如果您需要双向导电能力,则成本还会翻倍。机电断路器不便宜,但是仍具有成本优势。<br /></p><p style="text-align: center;"><img src="/files/ueditor/108/upload/image/20220104/1641267663404200.png" title="1641267663404200.png" alt="图1.png" /></p><p><strong>SiC会带来改变吗?</strong><br /></p><section data-support="96编辑器" data-style-id="34988"><section><section><p>神奇的新宽带隙半导体技术能弥补不足吗?在相同的晶粒面积下,碳化硅开关的导通电阻大约比硅好10倍,而且它的导热系数也好得多,能让热量散发出去,从而能应对双倍的最高温度。这让人们能够在小封装中并联足够的晶粒以在充当固态断路器的IGBT基础上进行改进,而SiC FET是理想的候选技术。SiC JFET和Si-MOSFET的共源共栅结构易于驱动,具有在当前开关技术中十分出众的RDS(on) x A 性能表征。作为固态断路器的论证者,UnitedSiC在1200V和300A额定值的SOT-227封装中将六个自己生产的1200V双栅极晶粒并联,实现了2.2毫欧电阻。在测试中,该原型安全地中断了接近2000A的故障电流,波形见图示。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220104/1641267686573580.png" title="1641267686573580.png" alt="图2.png" /></p></section></section></section><p><br /></p><p style="text-align: center;">【图1. SiC FET固态断路器安全地中断接近2000A的电流】</p><p>如果内部JFET栅极显露出来并连接到单独的针脚,则可以在快速开关应用中对边缘速率进行更直接的控制,并提供固态断路器等部分应用中可能需要的高效、可选常关或常开运行。略微正向偏移JFET栅极的能力也会稍稍提高导通电阻。不过另一个特征会显现出来,那就是在正2V左右以上,沟道会完全导电,栅极会充当正向偏压二极管。现在,如果注入固定小电流,则二极管的实际膝点电压与晶粒温度会有精确的关联。这一特征可以被测量,并用于执行快速超温检测,如果记录温度趋势,甚至可以实现长期运行状况检测。<br /></p><p><strong>SiC FET固态断路器取代机电断路器的趋势不断加强</strong><br /></p><p>SiC FET打开了大电流的固态断路器应用的大门,且其损耗只会随着技术进步而降低。并联器件有可能会让最终损耗与机械断路器相当,且成本不一定会成为阻碍因素,因为晶粒会发展,实现给定电阻所需的晶粒会减少。在未来几年,由于电动车销量促使断路器市场膨胀而带来的规模经济效应,SiC晶圆成本必然会减半。考虑到机电解决方案的维护和替换成本,采用该器件会更有吸引力。<br /></p><section data-support="96编辑器" data-style-id="33904"><section><section><p>工程领域还有一句谚语:“如果没坏,就不要去修。”我要说,不要等到它损坏,试试用SiC FET固态断路器打造一个让人放心的解决方案。<br /></p></section></section></section></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/sic"><span class='glyphicon glyphicon-tag'></span> SiC</a> </li> <li> <a href="/tag/固态断路器"><span class='glyphicon glyphicon-tag'></span> 固态断路器</a> </li> </ul> Tue, 04 Jan 2022 03:42:56 +0000 judy 100556657 at //www.jhzyg.net //www.jhzyg.net/content/2022/100556657.html#comments