电子创新元件网 - 碳化硅 - 德赢平台,德赢ac米兰官方区域合作伙伴 //www.jhzyg.net/tag/%E7%A2%B3%E5%8C%96%E7%A1%85 zh-hans 使用SiC MOSFET时如何尽量降低电磁干扰和开关损耗 //www.jhzyg.net/content/2022/100558069.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>对于一直在设法提高效率和功率密度并同时维持系统简单性的功率设计师而言,碳化硅(SiC)MOSFET的高开关速度、高额定电压和小RDS(on)使得它们具有十分高的吸引力。然而,由于高开关速度会导致高漏源电压(VDS)峰值和长振铃期,它们会产生电磁干扰,尤其是在电流大时。本文提供了一个较好的解决方案来优化电磁干扰和效率之间的平衡。这种方法已经采用1200V 40mOhm器件进行了双脉冲测试验证。</p> <p><strong>了解VDS峰值和振铃</strong><br /> 寄生电感是SiC MOSFET的VDS峰值和振铃的主要成因。从关闭波形(图1)中看,栅源电压(VGS)从18V至0V。关闭时的漏极电流(ID)为50A,VDS为800V。SiC MOSFET的高开关速度会导致高VDS峰值和长振铃期。该峰值降低了器件的设计余量以应对照明条件或负载突变,而长振铃期则带来的电磁干扰。在大电流下,这种情况更加明显。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100558069-244192-tu1shiyongsicmosfetshizaiguanbiqingkuangxiadevdsfengzhihezhenling.png" alt="" /></center> <p align="center"><strong>图1.使用SiC MOSFET时在关闭情况下的VDS峰值和振铃(1200V,40mOhm)</strong></p> <p><strong>常见电磁干扰抑制技术</strong><br /> 传统的电磁干扰抑制方法是使用大栅极电阻(RG)降低电流流经器件的速度(dI/dt)。但是大RG会显著增加开关损耗,要在效率和电磁干扰之间进行权衡取舍。</p> <p>另一种抑制电磁干扰的方法是降低功率回路杂散电感。要实现这一目的,需要更改电路板的布局,还需要使用体积较小、电感较低的封装。然而,尽量降低功率回路的效果是有限的,而且还需要遵守最小空隙和间隔方面的安全规定。使用较小的封装也会影响热性能。</p> <p>可以使用过滤器来帮助达到电磁干扰要求,简化系统权衡。频率抖动等控制技术也能降低供电导致的电磁干扰噪音。</p> <p><strong>使用RC缓冲电路</strong><br /> 采用简单的RC缓冲电路是一种更为有效和高效的方法。它能控制VDS峰值并缩短振铃期,同时实现更高的效率和可以忽略的关闭延迟。由于更快的dv/dt和额外的电容器,缓冲电路会有更高的位移电流,而这会降低关闭过渡期间的ID和VDS交叠。</p> <p>双脉冲测试(DPT)证实了RC缓冲电路的效果。它采用有电感负载的半桥配置。桥的高侧和低侧采用相同的器件,在低侧测量VGS、VDS和ID(图2)。电流变换器(CT)测量器件和缓冲电路电流。因此,测量的总开关损耗包含器件损耗和缓冲电路损耗。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100558069-244193-tu2banqiaopeizhidingbuhedibuqijianxiangtong.jpg" alt="" /></center> <p align="center"><strong>图2.半桥配置(顶部和底部器件相同)</strong></p> <p>RC缓冲电路由一个简单的200pF电容器和10Ω电阻串联而成,跨SiC MOSFET的漏极和源极连接。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100558069-244194-tu3rchuanchongdianluzuonengbidargyougengyouxiaodikongzhidianciganrao.jpg" alt="" /></center> <p align="center"><strong>图3. RC缓冲电路(左)能比大RG(右)更有效地控制电磁干扰</strong></p> <p>图3比较了图1中的同一个器件的关闭情况。左侧波形采用含小RG(off)的缓冲电路,而右侧波形采用大RG(off)且无缓冲电路。两种方法都限制了关闭峰值漏源电压VDS。然而,由于将振铃期降低至仅33ns,缓冲电路更加高效,延迟时间也更短。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100558069-244195-tu4bijiaobiaomingshiyongrchuanchongdianluduidakaishideyingxiangfeichangxiao.jpg" alt="" /></center> <p align="center"><strong>图4.比较表明使用RC缓冲电路对打开时的影响非常小</strong></p> <p>图4比较了在采用5Ω的RG(on)时,有RC缓冲电路(左)和没有缓冲电路时的波形。采用RC缓冲电路时的打开波形有一个峰值略高的反向恢复电流(Irr),但是没有其他显著区别。</p> <p>RC缓冲电路能比大RG(off)更有效地控制VDS的峰值和振铃期,但是它会影响效率吗?<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100558069-244196-5huanchongdianluhedargoffdekaiguansunhao.jpg" alt="" /></center> <p align="center"><strong>图5.缓冲电路和大RG(off)的开关损耗(Eoff、Eon)的比较</strong></p> <p>在48A电流下,大RG(off)的关闭损耗是含小RG(off)的缓冲电路的两倍以上,几乎与不采用缓冲电路时相当。因此,可以得出结论,缓冲电路更加高效,它允许更快地开关,并能更有效地控制VDS峰值和振铃。从打开损耗中可以看出,缓冲电路的Eon仅有微小的提高。<br /> </p><center><img src="//www.jhzyg.net/files/2022-02/wen_zhang_/100558069-244197-tu6huanchongdianluyudargoffdezongkaiguansunhaoetotaldebijiao.jpg" alt="" /></center> <p align="center"><strong>图6.缓冲电路与大RG(off)的总开关损耗(Etotal)的比较</strong></p> <p>为了更好地了解整体效率,我们将Eoff与Eon加在一起得到Etotal(图6)。在全速开关的情况下,电流超过18A时,缓冲电路更高效。对于在40A/40kHz下开关的40mΩ器件而言,采用大RG(off)与采用含小RG(off)的缓冲电路时的损耗之差为11W。总之,与使用大RG(off)相比,缓冲电路能更为简单、有效和高效地尽量降低电磁干扰和开关损耗。</p> <p>文章来源: UnitedSiC</p> </div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/碳化硅"><span class='glyphicon glyphicon-tag'></span> 碳化硅</a> </li> <li> <a href="/tag/unitedsic"><span class='glyphicon glyphicon-tag'></span> UnitedSiC</a> </li> <li> <a href="/tag/电磁干扰"><span class='glyphicon glyphicon-tag'></span> 电磁干扰</a> </li> </ul> Mon, 28 Feb 2022 02:32:46 +0000 judy 100558069 at //www.jhzyg.net //www.jhzyg.net/content/2022/100558069.html#comments 从硅过渡到碳化硅,MOSFET的结构及性能优劣势对比 //www.jhzyg.net/content/2022/100557954.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">近年来,因为新能源汽车、光伏及储能、各种电源应用等下游市场的驱动,碳化硅功率器件取得了长足发展。更快的开关速度,更好的温度特性使得系统损耗大幅降低,效率提升,体积减小,从而实现变换器的高效高功率密度化。但是,像碳化硅这样的宽带隙(</span><span style="box-sizing: border-box; color: black;">WBG</span><span style="box-sizing: border-box; color: black;">)器件也给应用研发带来了设计挑战,因而业界对于碳化硅</span><span style="box-sizing: border-box; color: black;"> MOSFET</span><span style="box-sizing: border-box; color: black;">平面栅和沟槽栅的选择和权衡以及其浪涌电流、短路能力、栅极可靠性等仍心存疑虑。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">碳化硅</span></strong><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">MOSFET</span></strong><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">性能如何?</span></strong></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">650V-1200V</span><span style="box-sizing: border-box; color: black;">电压等级的</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">商业产品已经从</span><span style="box-sizing: border-box; color: black;">Gen 2</span><span style="box-sizing: border-box; color: black;">发展到了</span><span style="box-sizing: border-box; color: black;">Gen 3</span><span style="box-sizing: border-box; color: black;">,随着技术的发展,元胞宽度持续减小,比导通电阻持续降低,器件性能超越</span><span style="box-sizing: border-box; color: black;">Si</span><span style="box-sizing: border-box; color: black;">器件,浪涌电流、短路能力、栅氧可靠性等可靠性问题备受关注。那么</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">体二极管能抗多大的浪涌电流?其短路能力如何?如何保证栅极可靠性?</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">的体二极管抗浪涌电流大小与芯片的大小成正比。像派恩杰半导体采用自己搭建的</span><span style="box-sizing: border-box; color: black;">10ms</span><span style="box-sizing: border-box; color: black;">正弦半波浪涌极限测试平台和</span><span style="box-sizing: border-box; color: black;">10us</span><span style="box-sizing: border-box; color: black;">方波半波浪涌极限测试平台对其</span><span style="box-sizing: border-box; color: black;">1200V</span><span style="box-sizing: border-box; color: black;">的</span><span style="box-sizing: border-box; color: black;">SiC MOSFET P3M12080K3</span><span style="box-sizing: border-box; color: black;">进行抽样测试</span><span style="box-sizing: border-box; color: black;">10ms IFSM &gt;120A, 10us IFSM&gt;1100A</span><span style="box-sizing: border-box; color: black;">。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-align: center; line-height: 1.75em;"><img src="/files/ueditor/108/upload/catcher/20220223/1645607789156132.jpg" title="1645601609980769.jpg" alt="1.jpg" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%;" /></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; margin-left: 7px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-indent: 18px; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">图</span><span style="box-sizing: border-box; color: black;">1 10ms</span><span style="box-sizing: border-box; color: black;">浪涌极限测试平台</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-align: center; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;"><img src="/files/ueditor/108/upload/catcher/20220223/1645607790917498.jpg" title="1645601605982048.jpg" alt="2.jpg" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%;" /></span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; margin-left: 7px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-indent: 18px; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">图</span><span style="box-sizing: border-box; color: black;">2 10us</span><span style="box-sizing: border-box; color: black;">浪涌极限测试平台</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">至于短路能力,相较与</span><span style="box-sizing: border-box; color: black;">Si IGBT</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">电流密度更高且栅极氧化层较薄,其短路能力要弱于</span><span style="box-sizing: border-box; color: black;">Si IGBT</span><span style="box-sizing: border-box; color: black;">,但其依然有一定的短路能力。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">下表是派恩杰半导体部分产品短路能力:</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">表</span><span style="box-sizing: border-box; color: black;">1 1200V/650V MOSFET</span><span style="box-sizing: border-box; color: black;">器件短路耐量</span></p><p style="text-align:center"><span style="box-sizing: border-box; color: black;"><img src="/files/ueditor/108/upload/image/20220223/1645607827485658.jpg" title="1645607827485658.jpg" alt="捕获.JPG" /></span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">派恩杰半导体针对栅极的可靠性是严格按照</span><span style="box-sizing: border-box; color: black;">AEC-Q101</span><span style="box-sizing: border-box; color: black;">标准进行,在栅极分别加负压和正压(</span><span style="box-sizing: border-box; color: black;">-4V/+15V</span><span style="box-sizing: border-box; color: black;">)温度</span><span style="box-sizing: border-box; color: black;">175</span><span style="box-sizing: border-box; color: black;">℃下进行</span><span style="box-sizing: border-box; color: black;">HTGBR</span><span style="box-sizing: border-box; color: black;">和</span><span style="box-sizing: border-box; color: black;">HTRB</span><span style="box-sizing: border-box; color: black;">实验</span><span style="box-sizing: border-box; color: black;">1000h</span><span style="box-sizing: border-box; color: black;">无产品失效。除了常规</span><span style="box-sizing: border-box; color: black;">AEC-Q101</span><span style="box-sizing: border-box; color: black;">中要求的</span><span style="box-sizing: border-box; color: black;">1000h</span><span style="box-sizing: border-box; color: black;">小时实验,派恩杰半导体对于栅极寿命经行了大量研究。由于</span><span style="box-sizing: border-box; color: black;">SiC/SiO2</span><span style="box-sizing: border-box; color: black;">界面存在比</span><span style="box-sizing: border-box; color: black;">Si/SiO2</span><span style="box-sizing: border-box; color: black;">更大数量级的杂质缺陷,因此</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">通常拥有更高的早期失效概率。为了提高</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">的栅极可靠性,通过筛选识别并出早期失效非常重要。派恩杰半导体通过</span><span style="box-sizing: border-box; color: black;">TDDB</span><span style="box-sizing: border-box; color: black;">实验建立栅氧加速模型并建立筛选机制来消除潜在的失效可能性器件(可见往期推送)。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">除了</span><span style="box-sizing: border-box; color: black;">TDDB</span><span style="box-sizing: border-box; color: black;">外,当正常器件使用时,由于半导体</span><span style="box-sizing: border-box; color: black;">-</span><span style="box-sizing: border-box; color: black;">氧化界面处缺陷的产生或充放电,</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">的阈值电压会有漂移现象,阈值电压的漂移可能对器件长期运行产生明显影响。派恩杰半导体在高温条件下给</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">施加恒定的</span><span style="box-sizing: border-box; color: black;">DC</span><span style="box-sizing: border-box; color: black;">偏压,观察其阈值电压的变化量。一般施加正向偏压应力时,阈值电压向更高的电压偏移;施加负向偏压应力时,阈值电压向更低的电压偏移。这种效应是由于</span><span style="box-sizing: border-box; color: black;">SiC/SiO2</span><span style="box-sizing: border-box; color: black;">界面处或附近的载流子捕获引起的,负向高压是</span><span style="box-sizing: border-box; color: black;">MOS</span><span style="box-sizing: border-box; color: black;">界面附近的空穴被俘获,产生更多的空穴陷阱;相反正向高压造成电子的俘获。</span> <span style="box-sizing: border-box; color: black;">当然,也有的竞品产品在施加正向偏压应力时,阈值电压向更低的电压偏移;施加负向偏压应力时,阈值电压向更高的电压偏移。这是由于可移动离子在</span><span style="box-sizing: border-box; color: black;">SiC/SiO2</span><span style="box-sizing: border-box; color: black;">界面积累造成的,正向的偏压使得正性的可移动离子在</span><span style="box-sizing: border-box; color: black;">SiO2/SiC</span><span style="box-sizing: border-box; color: black;">界面积累,造成阈值电压负向漂移;负向的偏压使得正性的可移动离子在</span><span style="box-sizing: border-box; color: black;">poly/SiO2</span><span style="box-sizing: border-box; color: black;">界面积累,造成阈值电压正偏。为评估器件在使用过程中阈值电压漂移情况,派恩杰半导体进行了大量</span><span style="box-sizing: border-box; color: black;">BTI</span><span style="box-sizing: border-box; color: black;">实验,基于实验数据建立了</span><span style="box-sizing: border-box; color: black;">PBTI&amp;NBTI</span><span style="box-sizing: border-box; color: black;">模型,借助模型可知晓器件在不同温度和栅压情况下的阈值电压漂移程度。以</span><span style="box-sizing: border-box; color: black;">P3M12080K4</span><span style="box-sizing: border-box; color: black;">产品为例,该产品在极端应用情况下</span><span style="box-sizing: border-box; color: black;">(PBTI:V<span style="box-sizing: border-box; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; bottom: -0.25em;">gs</span>=19V</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">T<span style="box-sizing: border-box; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; bottom: -0.25em;">A</span>=150</span><span style="box-sizing: border-box; color: black;">℃</span><span style="box-sizing: border-box; color: black;">)</span><span style="box-sizing: border-box; color: black;">使用</span><span style="box-sizing: border-box; color: black;">20</span><span style="box-sizing: border-box; color: black;">年阈值电压的漂移情况(</span><span style="box-sizing: border-box; color: black;">+0.348V</span><span style="box-sizing: border-box; color: black;">)</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">该产品在极端应用情况下</span><span style="box-sizing: border-box; color: black;">(NBTI:V<span style="box-sizing: border-box; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; bottom: -0.25em;">gs</span>=-8V</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">T<span style="box-sizing: border-box; font-size: 12px; line-height: 0; position: relative; vertical-align: baseline; bottom: -0.25em;">A</span>=150</span><span style="box-sizing: border-box; color: black;">℃</span><span style="box-sizing: border-box; color: black;">)</span><span style="box-sizing: border-box; color: black;">使用</span><span style="box-sizing: border-box; color: black;">20</span><span style="box-sizing: border-box; color: black;">年阈值电压的漂移情况(</span><span style="box-sizing: border-box; color: black;">-0.17V</span><span style="box-sizing: border-box; color: black;">)。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">Cascode</span></strong><strong style="box-sizing: border-box;"><span style="box-sizing: border-box; color: black;">、平面栅、沟槽栅优缺点</span></strong></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">为提高高压电源系统能源效率,半导体业者无不积极研发经济型高性能碳化硅功率器件</span><span style="box-sizing: border-box; color: black;">,</span><span style="box-sizing: border-box; color: black;">例如</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构、碳化硅</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">平面栅结构、碳化硅</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">沟槽栅结构等。这些不同的技术对于碳化硅功率器件应用到底有什么影响,该如何选择呢?</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">首先,</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">是指采用</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">和常开型的</span><span style="box-sizing: border-box; color: black;">SiC JFET</span><span style="box-sizing: border-box; color: black;">串联连接,如图</span><span style="box-sizing: border-box; color: black;">3</span><span style="box-sizing: border-box; color: black;">所示。当</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">栅极为高电平时,</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">导通使得</span><span style="box-sizing: border-box; color: black;">SiC JFET</span><span style="box-sizing: border-box; color: black;">的</span><span style="box-sizing: border-box; color: black;">GS</span><span style="box-sizing: border-box; color: black;">短路,从而使其导通。当</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">栅极为低电平时,其漏极电压上升直至使</span><span style="box-sizing: border-box; color: black;">SiC JFET</span><span style="box-sizing: border-box; color: black;">的</span><span style="box-sizing: border-box; color: black;">GS</span><span style="box-sizing: border-box; color: black;">电压达到其关断的负压时,这时器件关断。</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构主要的优点是相同的导通电阻有更小的芯片面积,由于栅极开关由</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">控制,使得客户在应用中可以沿用</span><span style="box-sizing: border-box; color: black;">Si</span><span style="box-sizing: border-box; color: black;">的驱动设计,不需要单独设计驱动电路。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-align: center; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;"><img src="/files/ueditor/108/upload/catcher/20220223/1645607797934294.jpg" title="1645601598797817.jpg" alt="3.jpg" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%;" /></span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; margin-left: 7px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-indent: 18px; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">图</span><span style="box-sizing: border-box; color: black;">3 SiC Cascode</span><span style="box-sizing: border-box; color: black;">结构示意图</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">派恩杰半导体认为,</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构只是从</span><span style="box-sizing: border-box; color: black;">Si</span><span style="box-sizing: border-box; color: black;">产品转向</span><span style="box-sizing: border-box; color: black;">SiC</span><span style="box-sizing: border-box; color: black;">产品的一个过渡产品,因为</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构完全无法发挥出</span><span style="box-sizing: border-box; color: black;">SiC</span><span style="box-sizing: border-box; color: black;">器件的独特优势。首先,由于集成了</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">限制了</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">的高温应用,特别是其高温</span><span style="box-sizing: border-box; color: black;">Rdson</span><span style="box-sizing: border-box; color: black;">会达到常温下的</span><span style="box-sizing: border-box; color: black;">2</span><span style="box-sizing: border-box; color: black;">倍;其次,器件开关是由</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">控制,因此开关频率远低于正常</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">器件,这是由于</span><span style="box-sizing: border-box; color: black;">JFET</span><span style="box-sizing: border-box; color: black;">和</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">的合封其</span><span style="box-sizing: border-box; color: black;">dv/dt</span><span style="box-sizing: border-box; color: black;">也只能达到</span><span style="box-sizing: border-box; color: black;">10V/ns </span><span style="box-sizing: border-box; color: black;">以下,而</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">的</span><span style="box-sizing: border-box; color: black;">dv/dt</span><span style="box-sizing: border-box; color: black;">通常可以到达</span><span style="box-sizing: border-box; color: black;">30V/ns~80V/ns</span><span style="box-sizing: border-box; color: black;">。这些缺点使得</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">也无法减小无源元件的尺寸,从而达到减小整体系统体积和成本的需求;最后,虽然从</span><span style="box-sizing: border-box; color: black;">Cascode</span><span style="box-sizing: border-box; color: black;">结构上是由</span><span style="box-sizing: border-box; color: black;">SiC </span><span style="box-sizing: border-box; color: black;">高压</span><span style="box-sizing: border-box; color: black;">JFET</span><span style="box-sizing: border-box; color: black;">器件来承受母线电压,但是在开关过程中,</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">和</span><span style="box-sizing: border-box; color: black;">JFET</span><span style="box-sizing: border-box; color: black;">的输出电容依然会分压,当回路中存在电压震荡时,低压</span><span style="box-sizing: border-box; color: black;">Si MOSFET</span><span style="box-sizing: border-box; color: black;">依然有被击穿的风险。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">沟槽栅的主要优势来源于纵向沟道,这不但提高了载流子迁移率(这是由于</span><span style="box-sizing: border-box; color: black;">SiC(11<img src="/files/ueditor/108/upload/catcher/20220223/1645607797737343.jpg" title="1645601568282299.jpg" alt="1645601482(1).jpg" width="21" height="19" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%; width: 21px; height: 19px;" /></span>)晶面的迁移率高于(0001)晶面)而且可以缩小元胞尺寸从而有比平面型MOSFET更低的比导通电阻。然而,由于SiC非常坚硬,想要获得均匀,光滑且垂直的刻蚀表面的工艺难度和控制要求都非常的高,这也是只有英飞凌和Rohm推出沟槽栅SiC MOSFET的原因。沟槽栅工艺不仅对工艺实现要求非常高,在可靠性方面也存在一定的风险。首先,由于沟槽刻蚀后表面粗糙度和角度的限制使得沟槽栅的栅氧质量存在风险;其次,由于SiC的各向异性,沟槽侧壁的氧化层厚度和沟槽底部的氧化层厚度不同,因此必须采用特殊的结构和工艺来避免沟槽底部特别是拐角部分的击穿,这也增加了沟槽栅栅氧可靠性的不确定性;最后,由于trench MOSFET的结构,使得trench栅氧的电场强度要高于平面型,这也是Infineon和Rohm要做单边和双沟槽的原因。</p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); line-height: 1.75em;"><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">平面栅则是最早也是应用最广泛的结构,目前主流的产品均使用该结构。派恩杰半导体产品采用的是也是平面栅</span><span style="box-sizing: border-box; color: black;">MOSFET</span><span style="box-sizing: border-box; color: black;">结构。基于平面栅结构,派恩杰已经发布了</span><span style="box-sizing: border-box; color: black;">650V-1700V</span><span style="box-sizing: border-box; color: black;">各个电压平台的</span><span style="box-sizing: border-box; color: black;">SiC MOSFET</span><span style="box-sizing: border-box; color: black;">,而且已经顺利在新能源龙头企业批量供货,实现“上车”。</span></p><p style="box-sizing: border-box; margin-top: 0px; margin-bottom: 15px; color: rgb(51, 51, 51); font-family: Ubuntu, Tahoma, &quot;Helvetica Neue&quot;, Helvetica, Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255); text-align: center; line-height: 1.75em;"><span style="box-sizing: border-box; color: black;"><img src="/files/ueditor/108/upload/catcher/20220223/1645607797427612.jpg" title="1645601585739776.jpg" alt="4.jpg" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 100%;" /></span></p><p><br /></p></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/碳化硅"><span class='glyphicon glyphicon-tag'></span> 碳化硅</a> </li> <li> <a href="/tag/mosfet"><span class='glyphicon glyphicon-tag'></span> MOSFET</a> </li> </ul> Wed, 23 Feb 2022 09:17:41 +0000 judy 100557954 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557954.html#comments 如何充分发挥碳化硅耐高温的优势? //www.jhzyg.net/content/2022/100557451.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>文章来源:功率系统设计</p> <p>随着碳化硅(SiC)技术的发展,器件也在日趋成熟和商业化,其材料独特的耐高温性能正在加速推动结温从150℃走向175℃,有的公司称,现在已开始研发200℃结温的碳化硅器件。虽然碳化硅很耐高温,但是高温毕竟对器件的性能、故障率、寿命等都有很大的影响。带着这个问题记者采访了安森美(onsemi)汽车主驱功率模块产品线经理陆涛先生。安森美2021年11月刚刚完成了对碳化硅生产商GT Advanced Technologies的收购,此次收购无疑会增强安森美的碳化硅供应能力,对相关研发也是一种推动。<br /> </p><center><img src="//www.jhzyg.net/files/2022-01/wen_zhang_/100557451-241619-lutao.png" alt="" /></center> <p align="center"><strong>安森美汽车主驱功率模块产品线经理陆涛</strong></p> <p><strong>提高碳化硅器件结温的挑战</strong></p> <p>碳化硅器件结温从175℃到200℃要经历怎样的改变?在这一过程中,有哪些挑战和困难需要解决呢?</p> <p>陆涛认为,碳化硅芯片本身作为一个单极性宽禁带器件,在175℃至200℃之间其静态和动态特性将发生渐变。碳化硅芯片能够轻松地工作在这一较高的温度区间里。挑战更多在于碳化硅芯片的封装。半导体封装使用塑封环氧树脂和/或硅凝胶,其额定温度最高达175℃。当工作温度超过175℃时,这些化合物往往会进入一个过渡状态,其固有的特性开始崩溃,并释放出不必要的高浓度离子电荷,并开始渗透到芯片的表面,使性能下降。</p> <p>在极端条件下,会发生不可逆的可视塑性变形。另一个值得关注的领域是封装内使用的合金焊料。大多数半导体级合金焊料的熔点略高于200℃,而非常接近合金熔点的工作温度会以指数级数方式加速半导体封装的磨损。<br /> </p><center><img src="//www.jhzyg.net/files/2022-01/wen_zhang_/100557451-241620-hanliao.png" alt="" /></center> <p>总之,碳化硅芯片可以工作在更高的温度下,封装外壳需要用特殊的材料进行开发来处理高温,例如使用烧结和高温封装,提高热循环和功率循环效率。</p> <p>他指出,除了器件本身,热管理系统也需要优化。在通常使用液体冷却的电动车传动系统中,整个系统需要工程优化以防热失控。系统的热管理复杂性渐增,但目前这被视为仅仅是所需的系统级优化,没有基本阻断点。</p> <p><strong>提高结温是为了什么?</strong></p> <p>在碳化硅应用当中,是否有必要提高结温?安森美是如何规划的?预计什么时间可以推出高结温的产品?</p> <p>陆涛表示,让碳化硅方案的额定温度超过175℃是个重要的差异化因素。这增加了碳化硅产品的安全工作区(SOA)。另一方面,高额定温度的封装离实现还有很长的路要走,主要是由于缺乏可用的通用市场材料。</p> <p>他说,对于电动马达驱动中的逆变器应用,碳化硅MOSFET在驱动周期的大部分时间里都在125℃左右工作。在一些特殊情况下,如电动车运行中的上坡或峰值加速,碳化硅MOSFET将会以峰值功率运行,平均为其额定工作条件的1.5倍至2倍。让碳化硅方案工作结温超过175℃将有助于使系统设计人员能够更灵活地选择满足应用需求的最高性价比的解决方案。</p> <p>安森美正在积极研究碳化硅方案,使其能够在约5%至10%的运行寿命内在175℃以上短期运行。这减少了漫长的封装开发的复杂性,同时满足了应用的需要。安森美计划在2022年下半年发布产品,基础的材料开发正在进行中,确切的时间表将在以后公布。<br /> </p><center><img src="//www.jhzyg.net/files/2022-01/wen_zhang_/100557451-241621-xinpian.jpg" alt="" /></center> <p>他也强调,由于大多数常用功率开关的环境工作温度在25℃到100℃之间,从技术角度来看,工作在200℃并不能从根本上使碳化硅进入新的拓扑结构。但工作在200℃使碳化硅开关能在更高的功率密度下工作,从而使碳化硅方案比其硅基替代方案的性价比更高。</p> <p><strong>未来的发展预期</strong></p> <p>陆涛最后表示,碳化硅方案在200℃下连续工作是长期路线图的一部分。现在需要克服的主要SiC挑战涉及到如何提高规模经济。鉴于汽车功能电子化和清洁能源所带来的强大市场推动力,这成倍地增加了对SiC的需求。第一步是将供应链垂直化。这将确保SiC的稳定供应和整个价值链提供充分的质量控制,从衬底到封装成品。</p> <p>有了合理的规模经济,下一个挑战是如何提高产品良率。鉴于SiC的固有特性,与硅相比,其缺陷密度要高得多,制造和开发界将面临改进工艺的挑战,从而降低报废成本。</p> <p>一旦产品良率成熟,利用更大的晶圆直径(8英寸)将在提高资本效率方面发挥重要作用,并为更先进的SiC技术铺平道路。</p> </div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/碳化硅"><span class='glyphicon glyphicon-tag'></span> 碳化硅</a> </li> </ul> Fri, 28 Jan 2022 01:56:31 +0000 judy 100557451 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557451.html#comments 东芝推出全新1200V和1700V碳化硅MOSFET模块,助力实现尺寸更小,效率更高的工业设备 //www.jhzyg.net/content/2022/100557384.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>东芝电子元件及存储装置株式会社(“东芝”)今日宣布,推出两款全新碳化硅(SiC)MOSFET双模块---“<a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.MG600Q2YMS3.html">MG600Q2YMS3</a>”和“<a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.MG400V2YMS3.html">MG400V2YMS3</a>”:前者额定电压为1200V,额定漏极电流为600A;后者额定电压为1700V,额定漏极电流为400A。作为东芝首批具有上述额定电压的产品,它们与之前发布的MG800FXF2YMS3共同组成了1200V、1700V和3300V器件产品线。</p><p style="text-align:center"><img src="/files/ueditor/108/upload/image/20220126/1643177859256872.png" title="1643177859256872.png" alt="碳化硅(SiC)MOSFET双模块.png" /></p><p>这两种新模块在安装方式上兼容广泛使用的硅(Si)IGBT模块。两种新模块的低损耗特性满足了工业设备对提高效率、减小尺寸的需求,例如用于轨道车辆的转换器和逆变器以及可再生能源发电系统。</p><p><strong>应用:</strong></p><p>-    用于轨道车辆的逆变器和转换器</p><p>-    可再生能源发电系统</p><p>-    电机控制设备</p><p>-    高频DC-DC转换器</p><p><strong>特性:</strong></p><p>-    安装方式兼容Si IGBT模块</p><p>-    损耗低于Si IGBT模块</p><p>MG600Q2YMS3</p><p>VDS(on)sense=0.9V(典型值)@ID=600A,Tch=25℃</p><p>Eon=25mJ(典型值),Eoff=28mJ(典型值)@VDS=600V,ID=600A,Tch=150℃</p><p>MG400V2YMS3</p><p>VDS(on)sense=0.8V(典型值)@ID=400A,Tch=25℃</p><p>Eon=28mJ(典型值),Eoff=27mJ(典型值)@VDS=900V,ID=400A,Tch=150℃</p><p>-    内置NTC热敏电阻</p><p><strong> 主要规格:</strong></p><p>(除非另有说明,@Tc=25℃)</p><table cellspacing="0" cellpadding="0"><tbody><tr style=";height:1px" class="firstRow"><td width="437" colspan="3" style="border: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体">器件型号</span></p></td><td width="120" style="border-top: 1px solid windowtext; border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-image: initial; border-left: none; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.MG600Q2YMS3.html">MG600Q2YMS3</a></p></td><td width="123" style="border-top: 1px solid windowtext; border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-image: initial; border-left: none; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.MG400V2YMS3.html">MG400V2YMS3</a></p></td></tr><tr style=";height:1px"><td width="437" colspan="3" style="border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-left: 1px solid windowtext; border-image: initial; border-top: none; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">封装</span></p></td><td width="243" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">2-153A1A</p></td></tr><tr style=";height:1px"><td width="75" rowspan="6" style="border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-left: 1px solid windowtext; border-image: initial; border-top: none; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">绝对最大额定值</span></p></td><td width="362" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">漏极</span><span style=";color:black">-</span><span style=";font-family:宋体;color:black">源极电压</span><span style=";color:black">V</span><span style="font-size:9px;color:black">DSS</span><span style=";font-family:宋体;color:black">(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">1200</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">1700</p></td></tr><tr style=";height:1px"><td width="362" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">栅极</span><span style=";color:black">-</span><span style=";font-family:宋体;color:black">源极电压</span><span style=";color:black">V</span><span style="font-size:9px;color:black">GSS</span><span style=";font-family:宋体;color:black">(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">+25<span style=";font-family:宋体">/</span>-10</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">+25<span style=";font-family:宋体">/</span>-10</p></td></tr><tr style=";height:1px"><td width="362" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">漏极电流(直流)</span><span style=";color:black">I</span><span style="font-size:9px;color:black">D</span><span style=";font-family:宋体;color:black">(</span><span style=";color:black">A</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">600</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">400</p></td></tr><tr style=";height:1px"><td width="362" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">漏极电流(脉冲)</span><span style=";color:black">I</span><span style="font-size:9px;color:black">DP</span><span style=";font-family:宋体;color:black">(</span><span style=";color:black">A</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">1200</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">800</p></td></tr><tr style=";height:1px"><td width="362" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">结温</span><span style=";color:black">T</span><span style="font-size:9px;color:black">ch</span><span style=";font-family:宋体;color:black">(</span><span style=";font-family:宋体;color:black">℃</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">150</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">150</p></td></tr><tr style=";height:1px"><td width="362" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">隔离电压</span><span style=";color:black">V</span><span style="font-size:9px;color:black">isol</span><span style=";font-family:宋体;color:black">(</span><span style=";color:black">Vrms</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">4000</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">4000</p></td></tr><tr style=";height:1px"><td width="75" rowspan="5" style="border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-left: 1px solid windowtext; border-image: initial; border-top: none; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">电气特性</span></p></td><td width="198" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center"><span style=";font-family: 宋体;color:black">漏极</span><span style=";color:black">-</span><span style=";font-family:宋体;color:black">源极导通电压(感应)</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">DS(on)sense</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="164" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";color:black">@V</span><span style="font-size:9px;color:black">GS</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">+20V</span><span style=";font-family:宋体;color:black">,</span></p><p style="text-align:center;line-height:16px"><span style=";color:black">T</span><span style="font-size:9px;color:black">ch</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">25</span><span style=";font-family:宋体;color:black">℃</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">0.9</p><p style="text-align:center;line-height:16px">@I<span style="font-size: 9px">D</span><span style=";font-family:宋体">=</span>600A</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">0.8</p><p style="text-align:center;line-height:16px">@I<span style="font-size: 9px">D</span><span style=";font-family:宋体">=</span>400A</p></td></tr><tr style=";height:1px"><td width="198" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center"><span style=";font-family: 宋体;color:black">源极</span><span style=";color:black">-</span><span style=";font-family:宋体;color:black">漏极导通电压(感应)</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">SD(on)sense</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="164" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";color:black">@V</span><span style="font-size:9px;color:black">GS</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">+20V</span><span style=";font-family:宋体;color:black">,</span></p><p style="text-align:center;line-height:16px"><span style=";color:black">T</span><span style="font-size:9px;color:black">ch</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">25</span><span style=";font-family:宋体;color:black">℃</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">0.8</p><p style="text-align:center;line-height:16px">@I<span style="font-size: 9px">S</span><span style=";font-family:宋体">=</span>600A</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">0.8</p><p style="text-align:center;line-height:16px">@I<span style="font-size: 9px">S</span><span style=";font-family:宋体">=</span>400A</p></td></tr><tr style=";height:1px"><td width="198" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center"><span style=";font-family: 宋体;color:black">源极</span><span style=";color:black">-</span><span style=";font-family:宋体;color:black">漏极关断电压(感应)</span></p><p style="text-align:center"><span style=";color:black">V</span><span style="font-size:9px;color:black">SD(off)sense</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">V</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="164" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";color:black">@V</span><span style="font-size:9px;color:black">GS</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">-6V</span><span style=";font-family:宋体;color:black">,</span></p><p style="text-align:center;line-height:16px"><span style=";color:black">T</span><span style="font-size:9px;color:black">ch</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">25</span><span style=";font-family:宋体;color:black">℃</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">1.6</p><p style="text-align:center;line-height:16px">@I<span style="font-size: 9px">S</span><span style=";font-family:宋体">=</span>600A</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">1.6</p><p style="text-align:center;line-height:16px">@I<span style="font-size: 9px">S</span><span style=";font-family:宋体">=</span>400A</p></td></tr><tr style=";height:1px"><td width="198" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center"><span style=";font-family: 宋体;color:black">开通损耗</span></p><p style="text-align:center"><span style=";color:black">E</span><span style="font-size:9px;color:black">on</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">mJ</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="164" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";color:black">@T</span><span style="font-size:9px;color:black">ch</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">150</span><span style=";font-family:宋体;color:black">℃</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">25</p><p style="text-align:center;line-height:16px">@V<span style="font-size: 9px">DS</span><span style=";font-family:宋体">=</span>600V<span style=";font-family:宋体">,</span></p><p style="text-align:center;line-height:16px">I<span style="font-size: 9px">D</span><span style=";font-family:宋体">=</span>600A</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">28</p><p style="text-align:center;line-height:16px">@V<span style="font-size: 9px">DS</span><span style=";font-family:宋体">=</span>900V<span style=";font-family:宋体">,</span></p><p style="text-align:center;line-height:16px">I<span style="font-size: 9px">D</span><span style=";font-family:宋体">=</span>400A</p></td></tr><tr style=";height:1px"><td width="198" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center"><span style=";font-family: 宋体;color:black">关断损耗</span></p><p style="text-align:center"><span style=";color:black">E</span><span style="font-size:9px;color:black">of</span><span style=";color:black">f</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">mJ</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="164" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";color:black">@T</span><span style="font-size:9px;color:black">ch</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">150</span><span style=";font-family:宋体;color:black">℃</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">28</p><p style="text-align:center;line-height:16px">@V<span style="font-size: 9px">DS</span><span style=";font-family:宋体">=</span>600V<span style=";font-family:宋体">,</span></p><p style="text-align:center;line-height:16px">I<span style="font-size: 9px">D</span><span style=";font-family:宋体">=</span>600A</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">27</p><p style="text-align:center;line-height:16px">@V<span style="font-size: 9px">DS</span><span style=";font-family:宋体">=</span>900V<span style=";font-family:宋体">,</span></p><p style="text-align:center;line-height:16px">I<span style="font-size: 9px">D</span><span style=";font-family:宋体">=</span>400A</p></td></tr><tr style=";height:1px"><td width="75" rowspan="2" style="border-right: 1px solid windowtext; border-bottom: 1px solid windowtext; border-left: 1px solid windowtext; border-image: initial; border-top: none; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";font-family:宋体;color:black">热敏电阻特性</span></p></td><td width="362" colspan="2" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center"><span style=";font-family: 宋体;color:black">额定</span><span style=";color:black">NTC</span><span style=";font-family:宋体;color:black">电阻</span><span style=";color:black"> R</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">kΩ</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">5.0</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">5.0</p></td></tr><tr style=";height:1px"><td width="198" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center"><span style=";color:black">NTC</span> <span style=";color:black">B</span><span style=";font-family:宋体;color:black">值</span><span style=";color:black"> B</span><span style=";font-family:宋体;color:black">典型值(</span><span style=";color:black">K</span><span style=";font-family:宋体;color:black">)</span></p></td><td width="164" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; background: rgb(242, 242, 242); padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px"><span style=";color:black">@T</span><span style="font-size:9px;color:black">NTC</span><span style=";font-family:宋体;color:black">=</span><span style=";color:black">25</span><span style=";font-family:宋体;color:black">℃</span><span style=";color:black">-150</span><span style=";font-family:宋体;color:black">℃</span></p></td><td width="120" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">3375</p></td><td width="123" style="border-top: none; border-left: none; border-bottom: 1px solid windowtext; border-right: 1px solid windowtext; padding: 0px 7px;" height="1"><p style="text-align:center;line-height:16px">3375</p></td></tr></tbody></table><p>如需了解相关新产品的更多信息,请访问以下网址:</p><p>MG600Q2YMS3</p><p><a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.MG600Q2YMS3.html">https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.MG600Q2YMS3.html</a></p><p> MG400V2YMS3</p><p><a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.MG400V2YMS3.html">https://toshiba-semicon-storage.com/cn/semiconductor/product/intelligent-power-ics/detail.MG400V2YMS3.html</a></p><p> 如需了解东芝碳化硅功率器件的更多信息,请访问以下网址:</p><p>碳化硅功率器件</p><p><a href="https://toshiba-semicon-storage.com/cn/semiconductor/product/sic-power-devices.html" _src="https://toshiba-semicon-storage.com/cn/semiconductor/product/sic-power-devices.html">https://toshiba-semicon-storage.com/cn/semiconductor/product/sic-power-devices.html</a> </p><p> *本文提及的公司名称、产品名称和服务名称可能是其各自公司的商标。</p><p>*本文档中的产品价格和规格、服务内容和联系方式等信息,在公告之日仍为最新信息,但如有变更,恕不另行通知。</p><p><strong> 关于东芝电子元件及存储装置株式会社</strong></p><p>东芝电子元件及存储装置株式会社是先进的半导体和存储解决方案的领先供应商,公司累积了半个多世纪的经验和创新,为客户和合作伙伴提供分立半导体、系统LSI和HDD领域的杰出解决方案。</p><p>公司23,100名员工遍布世界各地,致力于实现产品价值的最大化,东芝电子元件及存储装置株式会社十分注重与客户的密切协作,旨在促进价值共创,共同开拓新市场,公司现已拥有超过7,110亿日元(62亿美元)的年销售额,期待为世界各地的人们建设更美好的未来并做出贡献。</p><p>如需了解有关东芝电子元件及存储装置株式会社的更多信息,请访问以下网址:<a href="https://toshiba-semicon-storage.com/">https://toshiba-semicon-storage.com</a></p></div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/东芝"><span class='glyphicon glyphicon-tag'></span> 东芝</a> </li> <li> <a href="/tag/碳化硅"><span class='glyphicon glyphicon-tag'></span> 碳化硅</a> </li> <li> <a href="/tag/mg600q2yms3"><span class='glyphicon glyphicon-tag'></span> MG600Q2YMS3</a> </li> </ul> Wed, 26 Jan 2022 06:18:30 +0000 judy 100557384 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557384.html#comments 理想开关自身会带来挑战 //www.jhzyg.net/content/2022/100557277.html <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"><p>随着我们的产品接近边沿速率超快的理想半导体开关,电压过冲和振铃开始成为问题。适用于SiC FET的简单RC缓冲电路可以解决这些问题,并带来更高的效率增益。</p> <p>若要问功率转换器设计师,他们想要怎样的半导体开关,那回答可能是:“有低导通电阻、高关闭电阻,且两种状态间的转换尽可能快。”当然,这一想法的核心,简单来说,就是功率耗损低。SiC FET接近这种理想开关,750V级该器件的导通电阻现在还不到6毫欧,边沿速率以纳秒计,数千瓦的转换器和逆变器的效率值有望达到99.5%以上。</p> <p>若是稍加考虑,设计师还会加上几个“顺便”要求,如栅极驱动简单、额定电压高、第三象限高效运行、雪崩能量高、短路额定值高、热阻低、系统成本低等若干项。幸运的是,SiC FET也兼具这些优势,其性能表征十分出众。</p> <p>因此,设计师感到满意,直至他们在最大边沿速率下将SiC FET松散地插在电路试验板上,这时会立即冒出一股烟,可此时“供电电压远不到最大值,负载也轻!”但是配线电感和连接电感又是多少呢?在惊人的3000A/µs电流边沿速率下,电感仅100nH,根据人们熟知的等式V = -L.di/dt,产生的电压峰值为300V,从而增加开关应力,引起持续数微秒的高频振铃,从而摧毁了局部无线电接收,只一小会儿,SiC FET就毁坏了。<br /> </p><center><img src="//www.jhzyg.net/files/2022-01/wen_zhang_/100557277-240856-01.png" alt="" /></center> <p>现在,我们认识到,除非我们向着零连接电感努力,或者苛刻地规定开关额定电压并实现极大的电磁干扰滤波,否则就需要控制边沿速率并抑制振铃。一直以来,限制电压峰值的传统方法是添加串联栅极电阻RG(OFF),但是这会带来问题,造成波形延迟,进而限制占空比和高频运行,而高频运行是宽带隙开关值得称道的优势之一。栅极电阻还会显著增加开关损耗,而对振铃毫无效果。</p> <p>一个更好的解决方案是使用简单的RC缓冲电路。面对IGBT通常需要的大型热电阻电容网络,您可能会犹豫,但是对于SiC FET,情况则有所不同。它主要用于抑制连接电感和器件电容之间的谐振,在采用SiC FET时,谐振极低。这意味着通常只需要大约200pF(2倍或3倍Coss(er))电容与数欧的串联电阻就可以进行抑制。缓冲电路电阻会损耗一定功率,但是该电路网的作用是在软硬开关应用中减少关闭电压和电流之间的交叠,以便在此转换中切实减少损耗。</p> <p>缓冲电路会在打开时产生一定损耗,因此,要了解整体情况,应该考虑总损耗E(ON) + E(OFF)。下图显示的是40毫欧下的E(TOTAL)。蓝线表示的是无缓冲电路,RG(ON)和RG(OFF)均为5欧的情况。黄线表示的是RG(ON)为5欧,RG(OFF)为零欧,并使用200pF/10欧缓冲电路的情况。在40A时使用缓冲电路明显只有好处,当在40kHz下运行时损耗会减少约10.9W。在负载轻的时候,情况反过来了,但是在这些级别下,损耗不大。<br /> </p><center><img src="//www.jhzyg.net/files/2022-01/wen_zhang_/100557277-240857-02.png" alt="" /></center> <p>缓冲电路是一个很好的解决方案,但它会不会成为一项不可忽视的开支?如果在典型的应用中评估缓冲电路电阻耗费的能量,则每个循环可能约为120µJ,相当于在40kHz下耗费超过5W的能量。然而,测试表明,这些能量中大部分是在打开时通过线性区过渡期间在SiC FET沟道中损耗的,而不是在缓冲电路电阻上损耗的。因而在缓冲电路中使用1W电阻通常就足够了,在这个功率级别,表面安装类型就足以轻松应对了。电容器的体积不会大。</p> <p>现在,设计师可以满意地表示,他们解决了通向完美开关的又一个难题。这个器件可以轻松便宜地运用,以降低过冲和振铃,而又不影响其他优势。</p> </div> </div> </div> <!-- This file is not used by Drupal core, which uses theme functions instead. See http://api.drupal.org/api/function/theme_field/7 for details. After copying this file to your theme's folder and customizing it, remove this HTML comment. --> <ul class="list-inline"> <li> <a href="/tag/碳化硅"><span class='glyphicon glyphicon-tag'></span> 碳化硅</a> </li> <li> <a href="/tag/sic"><span class='glyphicon glyphicon-tag'></span> SiC</a> </li> <li> <a href="/tag/unitedsic"><span class='glyphicon glyphicon-tag'></span> UnitedSiC</a> </li> </ul> Mon, 24 Jan 2022 02:30:27 +0000 judy 100557277 at //www.jhzyg.net //www.jhzyg.net/content/2022/100557277.html#comments